Библиотека
Теология
КонфессииИностранные языкиДругие проекты |
Комментарии (3) Садохин А. Концепции современного естествознанияОГЛАВЛЕНИЕГлава 11 Теория эволюции органического мира11.1. Становление идеи развития в биологии Эволюционная теория и ее значениеПонять сущность жизни как специфической формы движения материи невозможно без изучения теорий биологической эволюции. Когда ученый использует термин «эволюция» применительно к биологическим процессам и явлениям, то чаще всего он подразумевает процесс длительных и постепенных изменений, которые приводят к коренным качественным изменениям живых организмов, сопровождающимся возникновением новых биологических систем, форм и видов. Созданная на основе исторического метода эволюционная теория, в задачу которой входит изучение факторов, движущих сил и закономерностей органической эволюции, по праву занимает центральное место в системе наук о живой природе. Она представляет собой обобщающую биологическую концепцию. Практически нет таких отраслей биологии, для которых эволюционная теория не давала бы методологических принципов исследования. По этой причине эволюционная биология является одним из трех важнейших направлений развития биологической науки. История развития эволюционных идейРазвитие эволюционных идей в биологии имеет достаточно длительную историю. Начало рассмотрению вопросов эволюции органического мира было положено еще в античной философии и продолжалось более двух тысяч лет, пока не возникли первые самостоятельные биологические дисциплины в науке Нового времени. Основным содержанием данного периода является сбор сведений об органическом мире, а также формирование двух основных точек зрения, объясняющих разнообразие видов в живой природе. Первая из них возникла еще на базе античной диалектики, утверждавшей идею развития и изменения окружающего мира. Вто- 278 рая точка зрения появилась вместе с христианским мировоззрением, основанном на идеях креационизма. В то время в умах многих ученых господствовало представление, что Бог создал весь окружающий нас мир, в том числе все виды жизни, существующие с тех пор в неизменном виде. На протяжении всего начального этапа развития эволюционной идеи между этими двумя точками зрения шла постоянная борьба, причем серьезное преимущество имела креационистская версия. Ведь наивно трансформистские представления о самозарождении живых существ и возникновении сложных организмов путем случайного сочетания отдельных органов, при котором нежизнеспособные сочетания вымирают, а удачные сохраняются (Эмпедокл), внезапном превращении видов (Анаксимен) и т.д. не могут рассматриваться даже как прообраз эволюционного подхода к познанию живой природы. Тем не менее, в этот период был высказан ряд ценных идей, необходимых для утверждения эволюционного подхода. Среди них особое значение имели выводы Аристотеля, который в своей работе «О частях животных» отмечал, что природа постепенно переходит от предметов неодушевленных к растениям, а затем к животным, причем этот переход идет непрерывно. К сожалению, Аристотель говорил не о развитии природы в его современном понимании, а о том, что одновременно сосуществует целый ряд соположенных живых форм, лишенных генетической связи между собой. Поэтому ценна, прежде всего, его идея «лестницы живых существ», показывающая существование организмов разной степени сложности, — появление эволюционных теорий было бы невозможно без осознания этого факта. Интерес к биологии заметно усилился в эпоху Великих географических открытий. Интенсивная торговля и открытие новых земель расширяли сведения о животных и растениях. Потребность в упорядочении быстро накапливающихся знаний привела к необходимости их систематизации и появлению первых классификаций видов, среди которых особое место принадлежит классификации К. Линнея. В своих представлениях о живой природе Линней исходил из идеи неизменности видов. Но в том же XVIII в. появились и другие идеи, связанные с признанием не только градации, но и постепенного усложнения органических форм. Эти представления стали называться трансформизмом, и к этому направлению принадлежали многие известные ученые того времени. Все трансформисты признавали изменяемость видов организмов под действием изменений окружающей среды, но при этом большинство из них еще не имели целостной и последовательной концепции эволюции. Именно так в работах швейцарского биолога Ш. Бонне впервые было использовано понятие эволюции как процесса длительного, 279 постепенного изменения, приводящего к появлению новых видов. Однако в работах большинства ученых того времени идеи градации живых существ и идеи эволюции существовали раздельно. В единую теорию они оформились только в XIX в., когда появилась эволюционная теория Ж. Б. Ламарка. Концепция развития Ж.Б. ЛамаркаПервая попытка построить целостную концепцию развития органического мира была предпринята французским естествоиспытателем Ж. Б. Ламарком. В своем труде «Философия зоологии» Ламарк обобщил все биологические знания начала XIX в. Им были разработаны основы естественной систематики животных и впервые обоснована целостная теория эволюции органического мира, поступательного исторического развития растений и животных. Для создания эволюционной теории нужно было ответить на следующие вопросы: «Что является основной единицей эволюции?», «Что является факторами и движущими силами эволюции?», «Как происходит передача вновь приобретенных признаков следующим поколениям?». В основу эволюционной теории Ламарком было положено представление о развитии, постепенном и медленном, от простого к сложному, с учетом роли внешней среды в преобразовании организмов. Ламарк считал, что первые самозародившиеся организмы дали начало всему многообразию существующих ныне органических форм. К этому времени в науке уже достаточно прочно утвердилось представление о «лестнице живых существ» как последовательном ряде независимых, неизменных, созданных Творцом форм. Он видел в градации этих форм отражение истории жизни, реального процесса развития одних форм из других. Развитие от простейших до самых совершенных организмов — главное содержание истории органического мира. Человек — тоже часть этой истории, он развился из обезьян. Главной причиной эволюции Ламарк считал присущее живой природе изначальное (заложенное Творцом) стремление к усложнению и самосовершенствованию своей организации. Оно проявляется во врожденной способности каждого индивида к усложнению организма. Вторым фактором эволюции он называл влияние внешней среды: пока она не изменяется, виды постоянны, как только она становится иной, виды также начинают меняться. При этом Ламарк на более высоком уровне по сравнению с предшественниками разработал проблему неограниченной изменчивости живых форм под влиянием условий существования: питания, климата, особенностей почвы, влаги, температуры и т.д. 280 Исходя из уровня организации живых существ, Ламарк выделял две формы изменчивости: 1) прямую — непосредственную изменчивость растений и низ 2) косвенную — изменчивость высших животных, которые Показав происхождение изменчивости, Ламарк проанализировал второй фактор эволюции — наследственность. Он отмечал, что индивидуальные изменения, если они повторяются в ряде поколений, при размножении передаются по наследству потомкам и становятся признаками вида. При этом, если одни органы животных развиваются, то другие, не вовлеченные в процесс изменений, атрофируются. Так, например, в результате упражнений у жирафа появилась длинная шея, ведь предки жирафа, питаясь листьями деревьев, тянулись за ними и в каждом поколении шея и ноги росли. Тем самым Ламарк высказал предположение, что изменения, которые растения и животные приобретают в течение жизни, наследственно закрепляются и передаются по наследству потомкам. При этом потомство продолжает развиваться в том же направлении, и один вид превращается в другой. Ламарк полагал, что историческое развитие организмов имеет не случайный, а закономерный характер и происходит в направлении постепенного и неуклонного совершенствования, повышения общего уровня организации. Кроме того, он подробно проанализировал предпосылки эволюции и сформулировал главные направления эволюционного процесса и причины эволюции. Он также разработал проблему изменчивости видов под влиянием естественных причин, показал значение времени и условий внешней среды в эволюции, которую рассматривал как проявление общего закона развития природы. Заслугой Ламарка является и то, что он первым предложил генеалогическую классификацию животных, построенную на принципах родственности организмов, а не только их сходства. Сущность теории Ламарка заключается в том, что животные и растения не всегда были такими, какими мы их видим теперь. Он доказал, что они развивались в силу естественных законов природы, следуя эволюции всего органического мира. Для ламаркизма характерны два основных методологических признака:
281 С точки зрения современной науки эти положения принципиально неверны, они опровергаются фактами и законами генетики. К тому же доказательства причин изменяемости видов, приводимые Ламарком, не были достаточно убедительными. Поэтому теория Ламарка не получила признания у современников. Но она не была и опровергнута, ее лишь забыли на некоторое время, чтобы вновь вернуться к ее идеям во второй половине XIX в., положив их в основу всех антидарвинистских концепций. Теория катастроф Ж. КювьеБыстрое развитие естествознания и селекционной работы, расширение и углубление исследований в различных отраслях биологии, интенсивное накопление новых научных фактов в XIX в. создали благоприятные условия для новых обобщений в теории эволюции живой природы. Одной из попыток такого рода обобщений стала теория катастроф французского зоолога Ж.Л. Кювье. Методологической основной теории катастроф стали большие успехи в таких областях биологической науки, как сравнительная анатомия и палеонтология. Кювье систематически проводил сравнение строения и функций одного и того же органа или целой системы органов у самых разных видов животных. Исследуя строение органов позвоночных животных, он установил, что все органы любого живого организма представляют собой части единой целостной системы. Вследствие этого строение каждого органа закономерно соотносится со строением всех других. Ни одна часть тела не может изменяться без соответствующего изменения других частей. Это означает, что каждая часть тела отражает принципы строения всего организма. Так, у травоядных животных, питающихся малопитательной растительной пищей, обязательно должен быть большой желудок, способный переварить эту пищу в больших количествах. Размер желудка обусловливает размеры других внутренних органов: позвоночника, грудной клетки. Массивное тело должно держаться на мощных ногах, снабженных твердыми копытами, а длина ног обусловливает такую длину шеи, которая дает возможность свободно щипать траву. У хищников пища более питательна, поэтому желудок у них меньше. Кроме того, им нужны мягкие лапы с подвижными когтистыми пальцами, чтобы незаметно подкрадываться к добыче и хватать ее, поэтому шея у хищников должна быть короткой, зубы острыми и т.д. Такое соответствие органов животных друг другу Кювье назвал принципом корреляций (соотносительности). Руководствуясь принципом корреляций, Кювье успешно применял полученные знания, 282 умея по единственному зубу восстановить облик животного, ведь, по мнению Кювье, в любом фрагменте организма, как в зеркале, отражалось все животное. Безусловной заслугой Кювье стало применение принципа корреляций в палеонтологии, что позволяло восстанавливать облик давно исчезнувших с лица Земли животных. Благодаря работам Кювье мы сегодня представляем себе, как выглядели динозавры, мамонты и мастодонты — весь мир ископаемых животных. Таким образом, Кювье, который сам исходил из идеи постоянства видов, не видя переходных форм между современными животными и животными, жившими ранее, внес большой вклад в становление эволюционной теории, появившейся полвека спустя. В процессе своих исследований Кювье заинтересовался историей Земли, земных животных и растений. Он потратил многие годы на ее изучение, сделав при этом множество ценных открытий. В частности, он обнаружил, что останки одних видов приурочены к одним и тем же геологическим напластованиям, а в соседних пластах находятся совершенно другие организмы. На этом основании он делал вывод, что животные, населявшие нашу планету, погибали почти мгновенно от неизвестных причин, а потом на их месте появлялись совершенно иные виды. Кроме того, он выяснил, что многие современные участки суши раньше были морским дном, причем смена моря и суши происходила неоднократно. В результате исследований Кювье пришел к выводу, что на Земле периодически происходили гигантские катаклизмы, уничтожавшие целые материки, а вместе с ними и их обитателей. Позднее на их месте появлялись новые организмы. Так была сформулирована знаменитая теория катастроф, пользовавшаяся большой популярностью в XIX в. Последователи и ученики Кювье, развивая его учение, пошли еще дальше, утверждая, что катастрофы охватывали весь земной шар. После каждой катастрофы следовал новый акт божественного творения. Таких катастроф и, следовательно, актов творения они насчитывали двадцать семь. Позиции теории катастроф пошатнулись лишь в середине XIX в. Немалую роль в этом сыграл новый подход к изучению геологических явлений Ч. Лайеля — принцип актуализма. Он исходил из того, что для познания прошлого Земли нужно изучить ее настоящее. Таким образом, Лайель пришел к выводу, что медленные, ничтожные изменения на Земле, если они будут долго идти в одном направлении, могут привести к поразительным результатам. Так был сделан еще один шаг к эволюционной теории, создателями которой стали Ч. Дарвин и А. Уоллес. 283 11.2. Теория эволюции Ч. ДарвинаИдея постепенного и непрерывного изменения всех видов растений и животных высказывалась многими учеными задолго до Дарвина. Поэтому само понятие эволюции — процесса длительных, постепенных, медленных изменений, в конечном итоге приводящих к коренным, качественным изменениям — возникновению новых организмов, структур, форм и видов, проникло в науку еще в конце XVIII в. Однако именно Дарвин создал совершенно новое учение о живой природе, обобщив отдельные эволюционные идеи в одну стройную теорию эволюции. Опираясь на огромный фактический материал и практику селекционной работы по выведению новых сортов растений и пород животных, он сформулировал основные положения своей теории, которые изложил в книге «Происхождение видов путем естественного отбора» (1859). Основные движущие факторы эволюции в теории ДарвинаДарвин пришел к выводу, что в природе любой вид животных и растений стремится к размножению в геометрической прогрессии. В то же время число взрослых особей каждого вида остается относительно постоянным. Так, самка трески мечет семь миллионов икринок, из которых выживает лишь 2%. Следовательно, в природе происходит борьба за существование, в результате которой накапливаются признаки, полезные для организма и вида в целом, а также образуются новые виды и разновидности. Остальные организмы гибнут в неблагоприятных условиях среды. Таким образом, борьба за существование — это совокупность многообразных, сложных взаимоотношений, существующих между организмами и условиями среды. В борьбе за существование выживают и оставляют потомство только те особи, которые обладают комплексом признаков и свойств, позволяющим им наиболее успешно конкурировать с другими особями. Таким образом, в природе происходит процесс избирательного уничтожения одних особей и преимущественного размножения других, т.е. естественный отбор, или выживание наиболее приспособленных. При изменении условий внешней среды полезными для выживания могут оказаться какие-то иные, чем прежде, признаки. В результате меняется направление отбора, перестраивается структура вида, благодаря размножению широко распространяются новые признаки — появляется новый вид. Полезные признаки сохраняются и передаются последующим поколениям, так как в живой при- 284 роде действует фактор наследственности, обеспечивающий устойчивость видов. Однако в природе нельзя обнаружить два одинаковых, совершенно тождественных организма. Все многообразие живой природы является результатом процесса изменчивости, т.е. превращений организмов под влиянием внешней среды. Итак, концепция Дарвина построена на признании объективно существующих процессов в качестве факторов и причин развития живого. Основными движущими факторами эволюции являются изменчивость, наследственность и естественный отбор. Изменчивость. Первым звеном эволюции выступает изменчивость (изменение и превращение организмов под действием внешней среды), которая является неотъемлемым свойством живого. Вследствие изменчивости признаков и свойств даже в потомстве одной пары родителей почти никогда не встречается одинаковых особей. Чем тщательнее и глубже изучается природа, тем больше формируется убеждение во всеобщем универсальном характере изменчивости. В природе нельзя обнаружить два совершенно одинаковых, тождественных организма. При благоприятных условиях эти различия могут не оказывать заметного влияния на развитие организмов, но при неблагоприятных каждое мельчайшее различие может стать решающим в том, останется ли этот организм в живых и даст потомство или же погибнет. Дарвин различал два вида изменчивости: 1) наследственную (неопределенную) и 2) ненаследственную (определенную). Под определенной (групповой) изменчивостью понимается сходное изменение всех особей потомства в одном направлении вследствие влияния определенных условий (изменение роста в зависимости от количества и качества пищи, изменение толщины кожи и густоты шерстяного покрова при изменении климата и т.д.). Под неопределенной (индивидуальной) изменчивостью понимается появление разнообразных незначительных отличий у особей одного и того же вида, которыми одна особь отличается от других. В дальнейшем «неопределенные» изменения стали назьшать мутациями, а «определенные» — модификациями. Наследственность. Следующим фактором эволюции является наследственность — свойство организмов обеспечивать преемственность признаков и свойств между поколениями, а также определять характер развития организма в специфических условиях внешней среды. Это свойство не абсолютно: дети никогда не бывают точными копиями родителей, но из семян пшеницы всегда вырастает только пшеница и т.п. В процессе размножения от поколения к поколению передаются не признаки, а код наследственной информации, определяющий лишь возможность развития будущих при- 285 знаков в определенном диапазоне. Наследуется не признак, а норма реакции развивающейся особи на действие внешней среды. Дарвин подробно проанализировал значение наследственности в эволюционном процессе и показал, что сами по себе изменчивость и наследственность еще не объясняют возникновения новых пород животных, сортов растений, их приспособленности, поскольку изменчивость разных признаков организмов осуществляется в самых разнообразных направлениях. Каждый организм — это результат взаимодействия между генетической программой его развития и условиями ее реализации. Борьба за существование. Рассматривая вопросы изменчивости и наследственности, Дарвин обратил внимание на сложные взаимоотношения между организмом и окружающей среды, на разные формы зависимости растений и животных от условий жизни, на их приспособление к неблагоприятным условиям. Такие разнообразные формы зависимости организмов от условий окружающей среды и других живых существ он назвал борьбой за существование. Борьба за существование, по Дарвину, — это совокупность взаимоотношений организмов данного вида друг с другом, с другими видами живых организмов и неживыми факторами внешней среды. Борьба за существование означает все формы проявления активности данного вида организмов, направленные на поддержание жизни своего потомства. Дарвин выделил три основные формы борьбы за существование: 1) межвидовую, 2) внутривидовую и 3) борьбу с неблагоприятными условиями внешней среды. Примеры межвидовой борьбы в природе встречаются часто и всем хорошо известны. Наиболее ярко она проявляется в борьбе хищников и травоядных животных. Травоядные животные смогут выжить и оставить потомство только в том случае, если сумеют избежать хищников и будут обеспечены пищей. Но растительностью питаются также разные виды млекопитающих, а кроме того — насекомые и моллюски. И здесь возникает ситуация: что досталось одному, не досталось другому. Поэтому в межвидовой борьбе успех одного вида означает неуспех другого. Внутривидовая борьба означает конкуренцию между особями одного вида, у которых потребность в пище, территории и других условиях существования одинакова. Дарвин считал внутривидовую борьбу наиболее напряженной. Поэтому в процессе эволюции у популяций выработались различные приспособления, снижающие остроту конкуренции: разметка границ, угрожающие позы и т.п. Борьба с неблагоприятными условиями среды выражается в стремлении живых организмов выжить при резких изменениях погодных условий. В этом случае выживают лишь наиболее приспособленные к изменившимся условиям особи. Они образуют новую популяцию, 286 что в целом способствует выживанию вида. В борьбе за существование выживают и оставляют потомство индивиды и особи, обладающие таким комплексом признаков и свойств, которые позволяют успешно противостоять неблагоприятным условиям среды. Естественный отбор. Однако основная заслуга Дарвина в создании теории эволюции заключается в том, что он разработал учение о естественном отборе как ведущем и направляющем факторе эволюции. Естественный отбор, по Дарвину, — это совокупность происходящих в природе изменений, обеспечивающих выживание наиболее приспособленных особей и преимущественное оставление ими потомства, а также избирательное уничтожение организмов, оказавшихся неприспособленными к существующим или изменившимся условиям окружающей среды. В процессе естественного отбора организмы адаптируются, т.е. у них развиваются необходимые приспособления к условиям существования. В результате конкуренции разных видов, имеющих сходные жизненные потребности, хуже приспособленные виды вымирают. Совершенствование механизма приспособления организмов приводит к тому, что постепенно усложняется уровень их организации и таким образом осуществляется эволюционный процесс. При этом Дарвин обращал внимание на такие характерные особенности естественного отбора, как постепенность и медленность процесса изменений и способность суммировать эти изменения в крупные, решающие причины, приводящие к формированию новых видов. Исходя из того, что естественный отбор действует среди разнообразных и неравноценных особей, он рассматривается как совокупное взаимодействие наследственной изменчивости, преимущественного выживания и размножения индивидов и групп особей, лучше приспособленных, чем другие к данным условиям существования. Поэтому учение о естественном отборе как движущем и направляющем факторе исторического развития органического мира является главным в теории эволюции Дарвина. Значение эволюционной теории ДарвинаТаким образом, Дарвин последовательно решил проблему детерминации органической эволюции в целом, объяснил целесообразность строения живых организмов как результат естественного отбора, а не как результат их стремления к самосовершенствованию. Также он показал, что целесообразность строения носит всегда относительный характер, так как любое приспособление оказывается полезным только в конкретных условиях существования. Этим он нанес серьезный удар по идеям телеологизма в естествознании. 287 Кроме того, Дарвин подчеркивал, что элементарной единицей эволюции является не отдельная особь, как у Ламарка, а группа особей — вид. Иными словами, под действие естественного отбора могут подпасть как отдельные особи, так и целые группы. Тогда отбор сохраняет признаки и свойства, невыгодные для отдельной особи, но полезные для группы особей или вида в целом. Примером такого приспособления служит жало пчелы — ужалившая пчела оставляет жало в теле врага и погибает, но гибель особи способствует сохранению пчелиной семьи. Такой подход привел к появлению популяционного мышления в биологии, являющегося основой современных представлений об эволюции. Наряду с несомненными достоинствами, в теории Дарвина были и существенные недостатки. Одно из возражений, выдвигавшихся ранее против этой теории, состояло в том, что она не могла объяснить причин появления у организмов многих структур, кажущихся бесполезными. Однако, как выяснилось впоследствии, многие морфологические различия между видами, не имеющие значения для выживания, представляют собой побочные эффекты действия генов, обусловливающих незаметные, но очень важные для выживания физиологические признаки. Слабым местом в теории Дарвина также были представления о наследственности, которые подвергались серьезной критике его противниками. Действительно, если эволюция связана со случайным появлением изменений и наследственной передачей приобретенных признаков потомству, то каким образом они могут сохраниться и даже усилиться в дальнейшем? Ведь в результате скрещивания особей, обладающих полезными признаками, с другими особями, которые ими не обладают, они передадут эти признаки в ослабленном виде. В конце концов в течение ряда поколений эти случайно возникшие изменения должны будут ослабнуть, а затем и вовсе исчезнуть. Так стакан молока растворится в бочке воды почти без следа. Этот вывод был получен с помощью элементарных арифметических подсчетов британским инженером и физиком Ф. Дженкиным в 1867 г. Сам Дарвин был вынужден признать эти доводы убедительными, при тогдашних представлениях о наследственности их было невозможно опровергнуть. Вот почему в последние годы жизни он стал все больше подчеркивать воздействие на процесс эволюции направленных изменений, происходящих под влиянием определенных факторов внешней среды. В дальнейшем были выявлены и некоторые другие недостатки теории Дарвина, касающиеся основных причин и факторов органической эволюции. Было ясно, что его теория нуждалась в дальнейшей разработке и обосновании с учетом последующих достижений биологической науки. 288 11.3. Дальнейшее развитие эволюционной теории. АнтидарвинизмС возникновением дарвинизма на первый план биологических исследований выдвинулось несколько задач:
Комплекс доказательств теории эволюцииСведения, подтверждающие дарвиновскую теорию эволюции, были получены из самых разных источников, среди которых важнейшее место занимают палеонтология, биогеография, систематика, селекция растений и животных, морфология, сравнительная эмбриология и сравнительная биохимия. Палеонтология занимается изучением ископаемых остатков, т.е. любых сохранившихся в земной коре следов прежде живших организмов. Среди них — целые организмы, твердые скелетные структуры, окаменелости, отпечатки. Такие следы были хорошо известны ученым задолго до появления палеонтологии в качестве самостоятельной науки. Их считали либо останками существ, сотворенных раньше других, либо артефактами, помещенными в горные породы Богом. В XIX в. эти находки были истолкованы с точки зрения теории эволюции. Дело в том, что в самых древних породах встречаются следы очень немногих простых организмов. В молодых породах находят разнообразные организмы, имеющие более сложное строение. Кроме того, достаточно много примеров существования видов лишь на одном из этапов геологической истории Земли, после чего они исчезают. Это понимается как возникновение и вымирание видов с течением времени. Постепенно ученые стали находить следы все большего количества «недостающих звеньев» в эволюции жизни — либо в виде ока-менелостей (например, археоптерикс — переходная форма между рептилиями и птицами), либо в виде ныне живущих организмов, близких по своему строению к ископаемым формам (например, латимерия, относящаяся к давно вымершим кистеперым рыбам). Конечно, ученым удалось найти далеко не все переходные формы, поэтому палеонтологическая летопись нашей планеты не является непрерывной, и этим аргументом пользуются противники эволю- 289 ционной теории. Тем не менее, ученые находят убедительные объяснения этого факта. В частности, считается, что далеко не все умершие организмы оказываются в условиях, благоприятных для их сохранения. Большая часть погибших особей съедается падальщиками, разлагается, не оставляя никаких следов, возвращается в круговорот веществ в природе. Палеонтологам удалось открыть некоторые закономерности эволюции. В частности, с ростом сложности организма продолжительность существования вида сокращается, а темпы эволюции возрастают. Так, виды птиц в среднем существуют 2 млн. лет, млекопитающие — по 800 тыс. лет, предки человека — около 200 тыс. лет. Также удалось выяснить, что продолжительность жизни вида зависит от размера его представителей. Географическое распространение (биография). Все организмы приспособлены к среде своего обитания. Поэтому все виды возникли в каком-то определенном ареале, а оттуда они могли распространиться в области со схожими природными условиями. Степень расселения зависит от того, насколько успешно могут данные организмы обосноваться в новых местах, насколько сложны естественные преграды, стоящие на пути расселения этого вида (океаны, горы, пустыни). Поэтому обычно распространение видов идет лишь в том случае, если подходящие территории расположены близко друг от друга. Так, в далеком прошлом массивы суши располагались ближе друг к другу, чем сейчас, и это способствовало широкому расселению многих видов. Если же в какой-то области нет более развитых видов, то это указывает на раннее отделение данной территории от места первоначального происхождения видов. Именно поэтому в Австралии сохранилось большое число сумчатых, отсутствующих в Европе, Африке и Азии. Данные факты не объясняют механизма возникновения новых видов, но указывают на то, что разные группы возникали в разное время и в разных областях, подтверждая, таким образом, теорию эволюции. Систематика. Первую таксономическую классификацию, в которую вошли выделенные единицы-таксоны, находящиеся в отношениях иерархического соподчинения создал К. Линней. В качестве единиц-таксонов Линней выделял: вид, род, семейство, отряд, класс, тип и царство. В основу своей классификации он положил структурное сходство между организмами, которое можно представить как результат их адаптации к определенным условиям среды на протяжении некоторого периода. Таким образом, эта классификация хорошо вписывается в эволюционную теорию, иллюстрируя процесс эволюции на Земле. Селекция растений и животных. Помимо естественного отбора существует искусственный отбор, связанный с целенаправленной 290 деятельностью человека по сохранению и созданию нужных видов. Именно так, путем селекции, из диких предков были выведены все культурные сорта растений и породы домашних животных. Ссылка на искусственный отбор дала Дарвину возможность провести аналогию с естественным отбором, идущим в природе. С созданием генетики стало ясно, что в ходе искусственного отбора сохраняются гены, полезные с точки зрения человека, и убираются гены, не устраивающие его. Сравнительная анатомия занимается сопоставлением различных групп растений и животных друг с другом. При этом выявляются общие структурные черты, присущие им. Так, у всех цветковых растений есть чашелистники, лепестки, тычинки, рыльце, столбик и завязь, хотя у разных видов они могут иметь разные размеры, окраску, число составляющих их частей и некоторые особенности их строения. То же самое можно сказать и о животных. Таким образом, сравнительная анатомия выявляет гомологичные органы, построенные по одному плану, занимающие сходное положение и развивающиеся из одних и тех же зачатков. Существование таких органов, как и появление рудиментарных органов, сохраняющихся у организмов, но не выполняющих никакой функции, можно объяснить только с позиций теории эволюции. Сравнительная эмбриология. Одним из основоположников этой науки стал К. Бэр, который изучал эмбриональное развитие у представителей разных групп позвоночных. При этом он обнаружил поразительное сходство в развитии зародышей всех групп, особенно на ранних этапах их развития. После этого Э. Геккель высказал мысль о том, что ранние стадии развития зародыша повторяют эволюционную историю своей группы. Он сформулировал закон рекапитуляции, согласно которому онтогенез повторяет филогенез. Иными словами, индивидуальное развитие организма повторяет развитие всего вида. Так, зародыш позвоночных на разных этапах своего развития имеет признаки рыбы, амфибии, рептилии, птицы и млекопитающего. Поэтому на ранних стадиях развития зародыша бывает очень сложно определить, к какому виду он принадлежит. Лишь на поздних этапах эмбрион приобретает сходство с взрослой формой. Закон рекапитуляции может быть объяснен только наличием общих предков у всех живых организмов, что подтверждает эволюционную теорию. Сравнительная биохимия. С ее появлением у эволюционной теории появились строго научные доказательства. Именно сравнительная биохимия показала наличие одинаковых веществ у всех организмов, подтверждающее их очевидное биохимическое родство. Вначале было доказано родство всех белков, а позднее — нуклеиновых кислот. 291 Иммунные реакции также подтверждают наличие эволюционных связей. Если белки, содержащиеся в сыворотке крови, ввести в кровь животным, у которых этих белков нет, то они действуют как антигены, побуждая организмы животных вырабатывать антитела. Открытие законов и механизмов эволюцииИсследователями было выявлено два класса механизмов эволюции: адаптационные и катастрофические, или пороговые. Адаптационные механизмы связаны с приспособлением организмов к окружающей среде. При этом происходит самонастройка системы, обеспечивающая ее стабильность в определенных условиях. Таким образом, изучая особенности среды, можно предвидеть, в каком направлении будут действовать механизмы адаптации. Этим пользуются селекционеры, проводя искусственный отбор. Можно сказать, что никакие внутренние или внешние возмущения не способны вывести изучаемую систему за пределы того канала эволюции, который предусмотрен для нее природой. Поэтому все возможные изменения системы, ее развитие можно предсказать с большой точностью. Таким образом, с точки зрения неравновесной термодинамики адаптационный механизм относится к одному из эволюционных этапов в развитии систем. Катастрофические механизмы эволюции имеют другую природу. Они связаны со скачком в развитии систем, происходящим при переходе через точку бифуркации. Обычно это связано с резким изменением условий окружающей среды. При этом старая структура системы разрушается и образуется качественно новая структура. Переход через точку бифуркации всегда идет случайно. Заранее предсказать, как пойдет развитие, невозможно. Поэтому периодически в биосфере Земли происходят катастрофические события, стимулирующие вымирание старых видов растений и животных и появление новых. Законы эволюции. Тем не менее, общим правилом является непрерывное усложнение и рост разнообразия органического мира после каждого перехода через критические точки в развитии биосферы. Это правило носит название закона дивергенции, который объясняет, почему первоначально близкие группы организмов разошлись в процессе эволюции, создав огромное разнообразие видов. К началу XX в. были открыты и другие законы эволюции. Так, в 1876 г. Ш. Делере установил правило прогрессирующей специализации, в соответствии с которым группа, вступившая на путь специализации, как правило, в своем дальнейшем развитии будет идти по пути все более глубокой специализации. И.И. Шмальгаузен открыл процесс автономизации онтогенеза, который говорит о сохранении определяющего значения физико- 292 химических факторов внешней среды, что ведет к возникновению относительной устойчивости развития. К. Уолдингтон сформулировал принцип гомеостаза, показывающий способность организмов к саморегуляции и поддержанию стабильности внутренней среды организма. Наконец, Л. Долло открыл правило необратимости, согласно которому эволюция является необратимым процессом, и организм не может вернуться к прежнему состоянию, в котором находились его предки. АнтидарвинизмКритика дарвинизма велась практически со времени его возникновения и имела объективные основания, поскольку из поля зрения дарвинистов изначально выпадал ряд важных вопросов. К их числу относятся вопросы о причинах сохранения в историческом развитии системного единства организмов, механизмах включения в эволюционный процесс онтогенетических перестроек, неравномерности темпов эволюции, причинах прогрессивной макроэволюции, причинах и механизмах биотических кризисов и др. Антидарвинизм второй половины XIX — начала XX вв. был представлен двумя главными течениями — неоламаркизмом и концепциями телеогенеза. Борьба с ними, а также поиск экспериментальных доказательств отдельных факторов естественного отбора составили основное содержание биологии этого времени. Неоламаркизм. Первым крупным антидарвинистским учением стал неоламаркизм, возникший в конце XIX в. Это учение основывалось на признании адекватной изменчивости, возникающей под непосредственным или косвенным влиянием факторов окружающей среды, вызывающих прямое приспособление организма к ним. Также неоламаркисты говорили о наследовании приобретенных таким образом признаков, отрицали созидательную роль естественного отбора. Как видно из названия этого направления, основу неоламаркизма составили идеи Ламарка, о которых ученые забыли в начале века, но вспомнили о них после появления дарвиновской теории эволюции. Неоламаркизм не был единым течением, а объединял в себе несколько направлений, каждое из которых пыталось развить ту или иную сторону учения Ламарка. В неоламаркизме выделяются: • механоламаркизм — концепция эволюции, согласно которой целесообразная организация создается путем приспособления, или согласно Ламарку, упражнения органов. Эта концепция объясняла эволюционные преобразования организмов их изначальной способностью целесообразно реагировать на изменения внешней среды, изме- 293 няя при этом свои структуры и функции. Вся сложность эволюционного процесса, таким образом, сводилась к простой теории равновесия сил, заимствованной, по существу, из ньютоновской механики. Сторонниками этого направления были Г. Спенсер и Т. Эймер;
Телеологическая концепция эволюции, или телеогенез, идейно была близко связана с ортоламаркизмом, так как исходила из все той же идеи Ламарка о внутреннем стремлении всех живых организмов к прогрессу. Наиболее видным представителем этого направления стал русский естествоиспытатель, основатель эмбриологии К. Бэр. Своеобразную модификацию телеогенеза представляли взгляды сторонников сальтационизма, заложенного в 60—70-е гг. XIX в. А. Зюссом и А. Келликером. По их мнению, уже на заре появления жизни возник весь план будущего развития природы, а влияние внешней среды определяло лишь частные моменты эволюции. Все крупнейшие эволюционные события — от возникновения новых видов до смены биот в геологической истории Земли — происходят в результате скачкообразных изменений, сальтаций, или макромутаций. По сути дела, это был катастрофизм, усиленный дополнительными аргументами. Эти взгляды существуют до сегодняшнего дня. Генетический антидарвинизм. В начале XX в. возникла генетика — учение о наследственности и изменчивости. Казалось бы, ее появление должно было решить многие вопросы эволюционной теории, до сих пор остававшиеся без ответа. Но первые генетики противопоставили данные своих исследований дарвинизму, в результате 294 чего в эволюционной теории возник глубокий кризис. Выступление генетиков против учения Дарвина вылилось в широкий фронт, объединяющий несколько течений: мутационизм, гибридогенез, пре-адаптационизм и др. Все они объединились под общим названием генетического антидарвинизма. Так, открытие устойчивости генов трактовалось как их неизменность. Это способствовало распространению антиэволюционизма (У. Бетсон). Мутационная изменчивость отождествлялась с эволюционными преобразованиями, что исключало необходимость отбора как главной причины эволюции. Венцом этих построений стала теория номогенеза Л.С. Берга, созданная в 1922 г. Основу ее составила идея, что эволюция есть запрограммированный процесс реализации внутренних, присущих всему живому закономерностей. Он считал, что организмы обладают внутренней силой неизвестной природы, действующей целенаправленно, независимо от внешней среды, в сторону усложнения организации. В доказательство этого Берг приводил множество данных по конвергентной и параллельной эволюции разных групп растений и животных. Из всех этих споров со всей очевидностью следовало, что генетика и дарвинизм должны были найти общий язык. Но прежде чем приступать к рассмотрению дальнейшего развития теории эволюции, следует подробнее остановиться на основных положениях генетики, без которой современный дарвинизм был бы невозможен. 11.4. Основы генетикиГенетика возникла в начале XX в., хотя первые шаги в изучении наследственности были сделаны во второй половине XIX в. чешским естествоиспытателем Г. Менделем, который своими опытами заложил основы современной генетики. В 1868 г. он поставил опыты по скрещиванию гороха, в которых доказал, что наследственность не имеет промежуточного характера, а передается дискретными частицами. Сегодня мы называем эти частицы генами. Результаты своих наблюдений Мендель отразил в опубликованной им научной статье, которая, к сожалению, осталась незамеченной. Те же самые выводы были вновь получены в 1900 г., когда три исследователя — X. Де Фриз, К. Корренс и Э. Чермак — провели свои эксперименты, в которых повторно открыли правила наследования признаков. Поэтому основателями новой науки считаются вышеназванные ученые, а свое название эта наука получила в 1906 г., •дал его английский биолог У. Бетсон. Огромную роль в становлении генетики сыграл датский исследователь В. Иогансен, который ввел в широкий обиход основные 295 термины и определения, используемые в этой науке. Среди них важнейшим понятием является «ген» — элементарная единица наследственности. Он представляет собой внутриклеточную молекулярную структуру. Как мы знаем сегодня, ген — это участок молекулы ДНК, находящийся в хромосоме, в ядре клетки, а также в ее цитоплазме и органоидах. Ген определяет возможность развития одного элементарного признака или синтез одной белковой молекулы. Как было отмечено ранее, число генов в крупном организме может достигать многих миллиардов. В организме гены являются своего рода «мозговым центром». В них фиксируются признаки и свойства организма, передающиеся по наследству. Совокупность всех генов одного организма называется генотипом. Совокупность всех вариантов каждого из генов, входящих в состав генотипов определенной группы особей или вида в целом, называется генофондом. Например, у мухи дрозофилы известна целая серия из 12 генов окраски глаза (красная, коралловая, вишневая, абрикосовая и т.д. до белого цвета). Генофонд является видовым, а не индивидуальным признаком. Совокупность всех признаков одного организма называется фенотипом. Фенотип представляет собой результат взаимодействия генотипа и окружающей среды. Генетика изучает два фундаментальных свойства живых систем — наследственность и изменчивость, т.е. способность живых организмов передавать свои признаки и свойства из поколения в поколение, а также приобретать новые качества. Наследственность создает непрерывную преемственность признаков, свойств и особенностей развития в ряду поколений. Изменчивость обеспечивает материал для естественного отбора, создавая как новые варианты признаков, так и бесчисленное множество комбинаций прежде существовавших и новых признаков живых организмов. Генетика о наследственностиВ основу генетики легли законы наследственности, обнаруженные Менделем при проведении им серии опытов по скрещиванию различных сортов гороха. В ходе этих исследований им были открыты количественные закономерности наследования признаков, позже названные в честь первооткрывателя законами Менделя. Эти три закона известны как закон единообразия первого поколения 296 гибридов, закон расщепления и закон независимого комбинирования признаков. Первый закон Менделя — закон единообразия первого поколения гибридов — устанавливает, что при скрещивании двух особей, различающихся по одной паре альтернативных признаков, гибриды первого поколения оказываются единообразными, проявляя лишь один признак. Например, при скрещивании двух сортов гороха с желтыми и зелеными семенами в первом поколении гибридов все семена имеют желтую окраску. Этот признак, проявляющийся в первом поколении гибридов, называется доминантным. Второй признак (зеленая окраска), называется рецессивным и в первом поколении гибридов подавляется. Второй закон Менделя — закон расщепления — гласит, что при скрещивании гибридов первого поколения их потомство (второе поколение гибридов) дает расщепление по анализируемому признаку в отношении 3 : 1 по фенотипу, 1:2:1 по генотипу, или Аа + Аа = АА + 2Аа + аа. В этом же примере скрещивания двух сортов гороха с желтыми и зелеными семенами во втором поколении гибридов произойдет расщепление: появятся растения с зелеными семенами (рецессивный признак), однако количество зеленых семян будет в три раза меньше количества желтых (доминантный признак). Третий закон Менделя — закон независимого комбинирования признаков — утверждает, что при скрещивании организмов, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях. Так, при дигибридном скрещивании двух сортов гороха с желтыми гладкими и зелеными морщинистыми семенами во втором поколении гибридов по внешним признакам выявляются четыре группы особей (желтые гладкие семена, желтые морщинистые, зеленые гладкие, зеленые морщинистые) в количественном соотношении — 9:3:3:1. Хромосомная теория наследственности. Третий закон Менделя действует не во всех случаях. Поэтому важным этапом в развитии генетики явилось создание в начале XX в. американским ученым Г. Морганом хромосомной теории наследственности. Наблюдая деление клеток, Морган пришел к выводу, что основная роль в передаче наследственной информации принадлежит хромосомам клеточного ядра. Американскому ученому удалось выявить закономерности наследования признаков, гены которых находятся в одной хромосоме, — они наследуются совместно. Это называется сцеплением генов, или законом Моргана. Морган логично заключил, что у любого организма признаков много, а число хромосом невелико. Следовательно, в каждой хромосоме должно находиться много генов. 297 Каждая хромосома состоит их центральной нити, именуемой хромонемой, вдоль которой расположены структуры — хромомеры. Хромосомы приобретают такой вид только во время деления клетки, в другое же время они имеют вид тонких темноокрашенных нитей. В каждой клетке любого организма данного вида содержится определенное число хромосом, но их количество у каждого вида различно. Например, у плодовой мушки дрозофилы их 8, у садового гороха — 14, у жабы — 22, у крысы — 42, у утки — 80, а у микроскопического морского животного радиолярии — 1600. Геном человека состоит из 46 хромосом. У других видов животных количество хромосом может быть различным, но определенным и постоянным для данного вида. Хромосомы всегда парны, т.е. в клетке всегда имеется по две хромосомы каждого вида. Так, у человека имеется 23 пары хромосом. Пары отличаются друг от друга по длине, форме и наличию утолщений и перетяжек. Ответила генетика также и на вопрос о происхождении половых различий. Так, у человека из 23 пар хромосом 22 пары одинаковы как у мужского, так и у женского организмов, а одна пара — различна. Именно благодаря этой паре обусловлены половые различия, поэтому ее называют половыми хромосомами, в отличие от одинаковых хромосом, названных аутосомами. Половые хромосомы у женщин одинаковы, их называют Х-хромосомами. У мужчин половые хромосомы разные — одна Х-хромосома и одна У-хромосома. Для каждого человека решающую роль в определении пола играет У-хромосома. Если яйцеклетка оплодотворяется сперматозоидом, несущим Х-хромосому, развивается женский организм, если же в яйцеклетку проникает сперматозоид, содержащий У-хромосому, развивается мужской организм. Следующий важный этап в развитии генетики начался в 1930-е гг. и связан с открытием роли ДНК в передаче наследственной информации. Началось раскрытие генетических закономерностей на молекулярном уровне, зародилась новая дисциплина — молекулярная генетика. Тогда же в ходе исследований было установлено, что основная функция генов состоит в кодировании синтеза белков. Затем, в 1950 г. С. Бензером была установлена тонкая структура генов, был открыт молекулярный механизм функционирования генетического кода, понят язык, на котором записана генетическая информация. Для этого используются четыре азотистых основания (аде-нин, тимин, гуанин и цитозин), пятиатомный сахар и остаток фосфорной кислоты. И, наконец, был расшифрован механизм репликации (передачи наследственной информации) ДНК. Известно, что последовательность оснований в одной нити в точности предопределяет последовательность оснований в другой — это так называемый принцип комплиментарности, действующий по типу матрицы. 298 При размножении две спирали старой молекулы ДНК расходятся, и каждая становится матрицей для воспроизводства новых нитей ДНК. Каждая из двух дочерних молекул обязательно включает в себя одну старую полинуклеотидную цепь и одну новую. Удвоение молекул ДНК происходит с удивительной точностью, чему способствует двухцепочное строение молекулы — новая молекула абсолютно идентична старой. В этом заключается глубокий смысл, потому что нарушение структуры ДНК, приводящее к искажению генетического кода, сделало бы невозможным сохранение и передачу по наследству генетической информации, обеспечивающей развитие присущих организму признаков. Спусковым механизмом репликации является наличие особого фермента — ДНК-полимеразы. Генетика об изменчивостиГенетические механизмы наследственности тесно связаны с генетическими механизмами изменчивости, т.е. со способностью живых организмов приобретать новые признаки и свойства в процессе взаимодействия организма с окружающей средой. Изменчивость является основой для естественного отбора и эволюции организмов. По механизмам возникновения и характеру изменений признаков генетика различает две основные формы изменчивости: 1) наследственную (генотипическую) и 2) ненаследственную (фено-типическую), или модификационную изменчивость. Модификаци-онная изменчивость зависит от конкретных условий среды, в которой существует отдельный организм, и дает возможность приспособиться к этим условиям, но в пределах нормы реакции. Так, европеец, долго живущий в Африке, приобретет сильный загар, но цвет его кожи все-таки не будет таким, как у коренных обитателей этого континента. Данные изменения не наследуются. Изменчивость, связанная с изменением генотипа, называется генотипической изменчивостью. Генетическая изменчивость передается по наследству и подразделяется на комбинативную и мутационную. Наиболее ярко наследственная изменчивость проявляется в мутациях — перестройках наследственного основания, генотипа организма. Мутационная изменчивость — это скачкообразное и устойчивое изменение генетического материала, передающееся по наследству. Хотя процесс репликации ДНК и деления клеток обычно идет чрезвычайно точно, иногда, примерно один раз на тысячу или миллион случаев, этот процесс нарушается, и тогда хромосомы новой клетки отличаются от тех, которые были в старой. Таким образом, 299 мутация возникает вследствие изменения структуры генов или хромосомы и служит единственным источником генетического разнообразия. Существуют разные типы генных и хромосомных мутаций. Факторы, способные вызывать мутации, называются мутагенами. Они подразделяются на физические (различные виды излучений, высокие или низкие температуры), химические (некоторые лекарства и др.) и биологические (вирусы, бактерии). По значимости для организма мутации подразделяются на отрицательные — летальные (несовместимые с жизнью), полулетальные (снижающие жизнеспособность организма), нейтральные и положительные (повышающие приспособляемость и жизнестойкость организма). Положительные мутации встречаются крайне редко, но именно они лежат в основе прогрессивной эволюции. Комбинативная изменчивость связана с получением новых комбинаций генов, имеющихся в генотипе. Сами гены при этом не изменяются, но возникают их новые сочетания, что приводит к появлению организмов с другим генотипом и, следовательно, фенотипом. Опыты Менделя по дигибридному скрещиванию являются примером проявления изменчивости, обусловленной перекомбинацией генов, т.е. комбинативной изменчивости. Еще одним примером такой изменчивости является генетическая рекомбинация, которая происходит при половом размножении. Именно поэтому дети похожи на своих родителей, но не являются их точной копией. Кроме того, рекомбинация может происходить за счет включения в геном клетки новых, привнесенных извне генетических элементов — мигрирующих генетических элементов. В последнее время было установлено, что даже само их внедрение в клетку дает мощный толчок к множественным мутациям. Такой толчок могут давать вирусы — одни из наиболее опасных мутагенов. Вирусы — это мельчайшие из живых существ. Они не имеют клеточного строения, не способны сами синтезировать белок, поэтому получают необходимые для их жизнедеятельности вещества, проникая в живую клетку и используя чужие органические вещества и энергию. У человека, как и у растений, и у животных, вирусы вызывают множество заболеваний. Хотя мутации — главные поставщики эволюционного материала, однако они относятся к изменениям случайным, подчиняющимся вероятностным, или статистическим, законам. Поэтому они не могут служить определяющим фактором эволюционного процесса. Правда, некоторые ученые рассматривают мутации в качестве основного эволюционного фактора, забывая при этом, что в таком случае необходимо признать изначальную полезность и пригодность абсолютно всех возникающих случайных изменений. А это противоречит наблюдениям в природе и экспериментам в селекции. 300 В действительности, кроме отбора — естественного или искусственного, не существует никакого другого средства регулирования наследственной изменчивости. Только отбор со стороны природы или человека может сохранить случайно появившиеся изменения, оказавшиеся полезными в определенных условиях, и использовать их для дальнейшей эволюции. Тем не менее, идея о ведущей роли мутаций в эволюционном процессе легла в основу теории нейтральных мутаций, созданной в 70—80-е гг. XX в. японскими учеными М. Кимурой и Т. Ота. Согласно этой теории изменения в функциях белоксинтезирующего аппарата являются результатом случайных, нейтральных по своим эволюционным последствиям мутаций. Их истинная роль — провоцировать генетический дрейф — изменение частоты генов в популяции под действием совершенно случайных факторов. На этой основе была провозглашена нейтралистская концепция недарвиновской эволюции, сущность которой заключается в идее, что на молекулярно-генетическом уровне естественный отбор не работает. И хотя эти представления не являются общепринятыми среди биологов, очевидно, что непосредственной ареной действия естественного отбора является фенотип, т.е. живой организм, онтогенетический уровень организации жизни. 11.5. Синтетическая теория эволюцииРассматривая основные факторы эволюции, нетрудно убедиться, что исходные идеи теории эволюции Дарвина в дальнейшем подверглись значительным уточнениям, дополнениям и исправлениям. Особую роль в становлении новых представлений о развитии сыграла генетика, которая составила основу неодарвинизма — теории органической эволюции путем естественного отбора признаков, детерминированных генетически. Другое общепринятое название неодарвинизма — синтетическая (основанная на данных многих областей естествознания), или общая, теория эволюции (СТЭ). Синтетическая теория эволюции представляет собой синтез основных эволюционных идей Дарвина и, прежде всего, естественного отбора с новыми результатами исследований в области наследственности и изменчивости. Началом разработки синтетической теории эволюции принято считать работы русского генетика С.С. Четверикова по популяци-онной генетике, затем к этой работе подключились около 50 ученых из восьми стран. В их работах было показано, что отбору подвергаются не отдельные признаки или особи, а генотип всей популяции, однако осуществляется он через фенотипические признаки 301 отдельных особей. Это приводит к распространению полезных изменений во всей популяции. Полезность изменчивости будет определяться естественным отбором группы особей, наиболее приспособленных к жизни в определенных условиях. Таким образом, элементарной единицей эволюции считается уже не особь (как считал Ламарк), не вид (как считал Дарвин), а совокупность особей одного вида, способных скрещиваться между собой, т.е. популяция. Мутировавший ген создает у особи новый признак, который в случае полезности для популяции закрепляется в ней. Эффективность процесса определяется частотой возникновения в популяции признака и состоянием особей в популяции. Существенный вклад в становление СТЭ внес российский ученый Н.В. Тимофеев-Ресовский. Он сформулировал положение об элементарных явлениях и факторах эволюции. По его мнению:
Основные факторы эволюции СТЭДарвин и его последователи к основным факторам эволюции относили изменчивость, наследственность и естественный отбор. В настоящее время к ним добавляют множество других дополнительных, неосновных факторов, которые, тем не менее, оказывают влияние на эволюционный процесс, а сами основные факторы понимаются теперь по-новому. Ведущие факторы эволюции. К ведущим факторам эволюции в настоящее время относят мутационные процессы, популяционные волны численности, изоляцию и естественный отбор. Поскольку мутации возникают случайно, постольку их результат становится неопределенным, однако случайное изменение становится необходимым, когда оно оказывается полезным для организма, помогает ему выжить в борьбе за существование. Закрепляясь и повторяясь в ряде поколений, случайные изменения вызывают перестройку в структуре живых организмов и их популяций и таким образом приводят к возникновению новых видов. Популяции, насыщенные мутациями, обладают широкими возможностями для совершенствования существующих и выработки новых приспособлений в измененяющихся условиях среды. Однако сам мутационный процесс без участия других факторов эволюции не может 302 направлять изменение природной популяции. Он является лишь поставщиком элементарного эволюционного материала. Популяционными волнами называют колебания численности особей в популяции. Причины этих колебаний могут быть различными. Например, резкое сокращение численности популяции может произойти вследствие истощения кормовых ресурсов. Среди оставшихся в живых немногочисленных особей могут оказаться редкие генотипы. Если в дальнейшем численность восстановится за счет этих особей, то это приведет к случайному изменению частот генов в генофонде данной популяции. Таким образом, популяционные волны являются поставщиком эволюционного материала. В качестве третьего основного фактора эволюции СТЭ признает обособленность (изоляцию) группы организмов. На эту особенность указывал еще Дарвин, который считал, что для образования нового вида определенная группа старого вида должна обособиться, но он не мог объяснить необходимость этого требования с точки зрения наследственности. В настоящее время установлено, что обособление и изоляция определенной группы организмов необходимы для того, чтобы она не могла скрещиваться с другими видами и тем самым передавать им и получать от них генетическую информацию. Изоляция разных групп организмов в природе, а также в практике селекционной работы осуществляется разными способами, но цель их одна — исключить обмен генетической информацией с другими видами. Направляющий фактор СТЭ — естественный отбор. Однако в настоящее время представления о естественном отборе дополнились новыми фактами, значительно расширились и углубились. Естественный отбор следует понимать как избирательное выживание и возможность оставления потомства отдельными особями. Биологическое значение особи, давшей потомство, определяется ее вкладом в генофонд популяции. Отбор действует в популяции, его объектами являются фенотипы отдельных особей. Фенотип организма формируется на основе реализации информации генотипа в определенных условиях среды. Таким образом, отбор из поколения в поколение по фенотипам ведет к отбору генотипов, так как потомкам передаются не признаки, а генные комплексы. В СТЭ различают три основные формы естественного отбора: 1) стабилизирующий, 2) движущий и 3) дизруптивный. Стабилизирующий отбор способствует сохранению признаков вида в относительно постоянных условиях среды. Он поддерживает средние значения, выбраковывая мутационные отклонения от ранее сформировавшейся нормы. Стабилизирующая форма отбора действует до тех пор, пока сохраняются условия, повлекшие образование того или иного признака или свойства. Примером стабилизирующе- 303 го отбора является избирательная гибель домовых воробьев при неблагоприятных погодных условиях. У выживших птиц различные признаки оказываются близкими к средним значением. Среди погибших эти признаки сильно варьировались. Примером действия этой формы отбора в популяциях людей служит большая выживаемость детей со средней массой. Движущий отбор благоприятствует изменению среднего значения признака в измененных условиях среды. Он обусловливает постоянное преобразование приспособлений видов соответственно изменениям условий существования. Особи популяции имеют некоторые отличия по генотипу и фенотипу. При длительном изменении внешней среды, преимущественно в жизнедеятельности и размножении, может появиться часть особей вида с некоторыми отклонениями от средней нормы. Это приведет к изменению генетической структуры, возникновению эволюционно новых приспособлений и перестройке организации вида. Одним из примеров этой формы отбора является потемнение окраски бабочки березовой пяденицы в развитых индустриальных районах Англии. В сельскохозяйственных районах распространены светлоокрашенные формы, а вблизи промышленных центров кора деревьев становится темной из-за исчезновения лишайников, поэтому там преобладает форма темноокрашенных бабочек. Дизруптивный отбор действует в разнообразных условиях среды, встречающихся на одной территории, и поддерживает несколько фенотипически различных форм за счет особей со средней нормой. Если условия среды настолько изменились, что основная масса вида утрачивает приспособленность, то преимущество приобретают особи с крайними отклонениями от средней нормы. Такие формы быстро размножаются, и на основе одной группы формируется несколько новых. Основной результат этого отбора заключается в наличии нескольких, различающихся по какому-либо признаку групп, как бы разрывающих популяцию. Следует отметить, что перечисленные типы отбора очень редко встречаются в чистом виде. Как правило, в живой природе наблюдаются сложные, комплексные типы отбора, и необходимы особые усилия, чтобы выделить из них более простые типы. Концепции микро- и макроэволюцииВажной составной частью синтетической теории эволюции являются концепции микро- и макроэволюции. Под микроэволюцией понимают совокупность эволюционных процессов, протекающих в популяциях, приводящих к изменениям генофонда этих популяций и образованию новых видов. 304 Считается, что микроэволюция протекает на основе мутационной изменчивости под контролем естественного отбора. Мутации служат единственным источником появления качественно новых признаков, а естественный отбор — единственным творческим фактором микроэволюции, направляющим элементарные эволюционные изменения по пути формирования адаптации организмов к изменяющимся условиям внешней среды. На характер процессов микроэволюции оказывают влияние колебания численности популяций («волны жизни»), обмен генетической информацией между ними, их изоляция и дрейф генов. Микроэволюция ведет либо к изменению всего генофонда биологического вида как целого, либо к их обособлению от родительского вида в качестве новых форм. Под макроэволюцией понимают эволюционные преобразования, ведущие к формированию таксонов более высокого ранга, чем вид (родов, отрядов, классов). Считается, что макроэволюция не имеет специфических механизмов и осуществляется только посредством процессов микроэволюции, будучи их интегрированным выражением. Накапливаясь, микроэволюционные процессы выражаются внешне в макро-эволюционных явлениях, т.е. макроэволюция представляет собой обобщенную картину эволюционных изменений. Поэтому на уровне макроэволюции обнаруживаются общие тенденции, направления и закономерности эволюции живой природы, которые не поддаются наблюдению на уровне микроэволюции. Основные положения СТЭИсходя из сказанного выше, основные положения синтетической теории эволюции сводятся к четырем утверждениям:
305 каких-либо специфических механизмов возникновения новых форм жизни не существует. Синтетическая теория эволюции не является застывшей и завершенной концепцией. У нее есть ряд трудностей, на которых основываются недарвиновские концепции эволюции, как уже упоминавшиеся выше, так и недавно возникшие. Так, она допускает возможность изменения геномов организмов в результате мутаций. Но геном любого организма содержит огромное количество нуклеоти-дов, поэтому мутации не могут повлиять на него так, чтобы получился другой геном. Скорее всего, изменение генома одной клетки или нескольких клеток приведет к рассогласованию в поведении клеток, и популяции клеток не сформируется. По мнению ряда ученых, приспособленность организмов, естественный отбор и мутации действуют в живой природе, но они не работают в тех масштабах, которые необходимы для образования новых форм. Так, недавно возникла еще одна концепция недарвиновской эволюции — пунктуализм. Его сторонники считают, что процесс эволюции идет путем редких и быстрых скачков, а в 99% своего времени вид пребывает в стабильном состоянии — стазисе. В предельных случаях скачок к новому виду может совершиться в популяции, состоящей всего из десятка особей, в течение одного или нескольких поколений. Эта гипотеза опирается на широкую генетическую базу, заложенную рядом фундаментальных открытий в молекулярной генетике и биохимии. Пунктуализм отверг генетико-популяционную модель видообразования, идею Дарвина о разновидностях и подвидах как зарождающихся видах и сфокусировал свое внимание на молекулярной генетике особи как носителе всех свойств вида. Ценность этой концепции заключается в идее разобщенности микро- и макроэволюции и независимости управляемых ими факторов. Возможно, в будущем СТЭ и недарвиновские концепции эволюции, дополняя друг друга, объединятся в новую единую теорию жизни и развития живой природы. Литература для самостоятельного изучения
306
. Комментарии (3)
См. также
теория Дарвина Доказательства эволюции живого Пути и причины эволюции ФЕНОМЕН ЖИЗНИ Концепции возникновения жизни Эволюционное учение Развитие жизни на Земле Формирование идей эволюции в биологии Основные гипотезы происхождения живого ЭВОЛЮЦИОННАЯ ТЕОРИЯ ДАРВИНА ТЕОРИЯ КАТАСТРОФ КЮВЬЕ КОНЦЕПЦИЯ РАЗВИТИЯ ЛАМАРКА Биологическая картина мира Идея эволюции - электронная библиотека науки |
|