Библиотека

Теология

Конфессии

Иностранные языки

Другие проекты







Комментарии (2)

Дубнищева Т. Концепции современного естествознания. Учебное пособие

ОГЛАВЛЕНИЕ

Глава 12 ОНТОГЕНЕТИЧЕСКИЙ УРОВЕНЬ ОРГАНИЗАЦИИ ЖИЗНИ.
КОНЦЕПЦИИ
ЭВОЛЮЦИОННОЙ БИОЛОГИИ
12.1. Основные положения клеточной теории, методы изучения состава клетки

Онтогенетический уровень живого представлен отдельными организмами (особями). Клетки как элементарные структуры действуют как самостоятельные организмы (бактерии, простейшие), а так же, как клетки многоклеточных организмов. Особенность клеточного подуровня в том, что именно с него и начинается жизнь.
Клетка — элементарная живая система и основная форма организации живой материи: она усваивает пищу, способна существовать и расти, может разделиться на две, каждая из которых содержит генетический материал, идентичный исходной клетке. Клетка — это один из основных структурных, функциональных и воспроизводящих элементов живого. Между клетками растений и животных нет принципиальной разницы по строению и функциям, некоторые отличия лишь в строении мембран и некоторых орга-нелл. За 3 млрд лет существования на Земле живое вещество развилось до нескольких миллионов видов, но все они — от бактерий до высших животных — состоят из клеток. Специфичность клеточного подуровня заключается в специализации клеток. В человеческом организме до 1015 клеток. Половые клетки служат для размножения, соматические (от греч. soma— тело) имеют разное строение и функции (нервные, мышечные, костные). Клетки отличаются своими размерами, формой, количеством поглощенного красителя. Среди живого есть одно- и многоклеточные организмы. Вирусы — неклеточные организмы, они размножаются в чужих клетках. Некоторые водоросли потеряли свое клеточное строение. На клеточном уровне происходит разграничение и упорядочение процессов жизнедеятельности во времени и пространстве, что связано с приуроченностью функций к различным субклеточным структурам.
Об открытии клеточного строения живого вещества сообщил в 1665 г. Р.Гук в книге «Микрография, или некоторые физиологические описания мельчайших тел посредством увеличительных стекол» (тогда же он впервые употребил термин «клетка»). Гук, впервые применивший микроскоп для исследования живой ткани, увидел только клеточные стенки, отличающиеся размерами и толщиной. В конце XVII в. А. Левенгук при 200-кратном увеличении наблюдал «зародыши» и различные одноклеточные организмы, в том числе бактерии.
465

Клеточная теория, или цитология (от греч. kytos... — сосуд, клетка), сложилась в течение XIX в., когда появились более совершенные микроскопы (в последнее время ее чаще называют биологией клетки). Английский ботаник Р. Броун открыл ядро (1833), описав его как характерное тельце растительных клеток. Его открытие послужило толчком к другим открытиям. У клеток выделяют два уровня организации — прокариоты, не имеющие оформленного ядра, и эукариоты, у которых оно есть. Обобщил наблюдения Броуна и установил клеточную природу растительной ткани немецкий ботаник М. Шлейден. Вместе со своим другом Т. Шванном он впервые сформулировал основные положения о клеточном строении всех организмов и образовании клеток (1839). Чешский естествоиспытатель Я. Пуркине, открывший ядро яйцеклетки (1825) и проводивший исследования по физиологии зрительного восприятия, ввел понятие протоплазмы для клеточного содержимого (1839), когда понял, что именно оно, а не стенки клетки, является живым веществом. Позже протоплазму клетки стали разделять на цитоплазму и ядро.
«Все клетки образуются в результате деления других клеток» — дополнил немецкий патолог и антрополог Р. Вирхов (1855) клеточную теорию Шлейдена и Шванна. Он считал, что любой организм есть совокупность живых клеток, организованных наподобие небольшого государства. И каждая клетка ведет самостоятельную жизнь. Установили, что хранение и передача наследственных признаков осуществляются с помощью клеточного ядра (Вирхов, Геккель). При большем увеличении микроскопов в клетках открыли постоянные специализированные структуры (органоиды, или органеллы) — пластиды (такие, как хлоропласта, характерные для клеток, способных к фотосинтезу) и митохондрии. В 1898 г. итальянский гистолог К. Гольджи изобрел новый метод изучения клеток через микроскоп, вводя в них соли серебра, и обнаружил в нервных клетках совы и кошки сетчатые структуры, позднее названные аппаратом Гольджи.
Основа клеточной теории: клетка — основная структурная единица теории и единица развития живых организмов; ядро — основная составляющая клетки; клетки размножаются только делением; всем клеткам присуще мембранное строение; клеточное строение — свидетельство единого происхождения растительного и животного мира (рис. 12.1).
Процесс митозного деления клетки и особенности поведения хромосом были описаны в 1873 г. (И.Д.Чистяков, Э.Страсбургер). Затем установили, что первичное ядро зародышевой клетки образуется путем слияния сперматозоидов и яйцеклетки (О. Гервинг, Г. Фоль), что существует закон постоянства хромосом для каждого вида (Т. Бовери, Э. Страсбургер). В 1880 г. Флеминг описал хромосомы и последовательность событий при митозе, а через 10 лет были
466 Рис. 12.1. Схема деятельности основных структурных компонентов клетки
выяснены и более сложные явления, происходящие в ядре при мейозе. В начале XX в. многие биологи повторили опыты австрийского естествоиспытателя И.Менделя, открывшего еще в 1865 г. существование индивидуальных наследственных факторов (генов). Все это способствовало развитию цитогенетики. Современная клеточная теория исходит из единства расчлененности многоклеточного организма на клетки и его целостности, основанной на взаимодействии клеток. В цитоплазме различают цитолимфу, включения и органеллы. Цитолимфа — жидкая часть цитоплазмы, содержащая растворенные продукты жизнедеятельности клеток, а включения — нерастворимые структуры (капли жира, зерна крахмала, глыбки гликогена). Органеллы подразделяют на мембранные (наружная плазматическая мембрана — НПМ, эндоплазматическая сеть — ЭПС, аппарат Гольджи — АГ, лизосомы, митохондрии, пластиды) и немембранные (рибосомы, клеточный центр, жгутики и реснички, цитоскелет). От окружающей среды клетка
467

отделена плазматической мембраной, которая регулирует обмен между внутренней и внешней средой и служит границей клетки. В каждой клетке содержатся генетический материал в форме ДНК, регулирующей жизнедеятельность и самовоспроизведение, и цитоплазма.
Размеры клеток измеряют в микрометрах (мкм) и нанометрах (нм). Например, соматическая животная клетка средних размеров имеет 10 — 20 мкм в диаметре, растительная — 30 — 50 мкм; длина хлоропласта цветкового растения 5 — 10, бактерии — 2 мкм.
Для изучения клеточного строения световые микроскопы не годятся, так как их разрешающая способность ограничена длиной световой волны — чем меньше длина волны, тем выше разрешающая способность. Даже фиолетовой линии соответствует разрешение 200 нм, что недостаточно для изучения клеточных структур. Более высокое разрешение было достигнуто в 30-е гг. с помощью электронного микроскопа. С развитием методов исследования стало понятно, что клетка — это самовоспроизводящаяся химическая система, поэтому она должна поддерживать баланс с окружением, поглощать те вещества, которые требуются ей в качестве «сырья», и выводить наружу накапливающиеся «отходы», т. е. обеспечивать гомеостаз.
Электронный микроскоп устроен почти как световой, но роль пучка света в нем играют электроны. Пучок электронов обладает волновыми свойствами, а длина волны электронов короче, чем у света. Вместо обычных линз используют электромагнитные, направляющие пучок электронов, который вылетает из электронной пушки. На фотопластинке получается изображение предмета. Но срезы вещества должны быть достаточно тонкими, чтобы сквозь них могли проходить электроны, и, чтобы электроны не захватывались молекулами воздуха, нужно обеспечить условия почти полного вакуума. Это весьма сложно, и в 50-е гг. электронный микроскоп трансмиссионного типа заменили сканирующим. Электроны в нем отражаются от поверхности объекта, и изображение получается в обратном направлении. Разрешение несколько хуже, но требования к вакууму снижены, и можно проводить прижизненные исследования некоторых организмов. Фотографии имеют очень хорошее качество с самыми мелкими деталями поверхности.
Получаемую с помощью электронного микроскопа структуру стали называть ультраструктурой.
Химический состав клеток весьма сложен, так как каждая клетка выполняет свою функцию в организме. Специализация достигается за счет усиленного развития тех или иных свойств, присущих почти всем типам клеток (рис. 12.2). Кроме воды (около 70 %) в ней содержатся белки, нуклеиновые кислоты, ионы минеральных солей, углеводы, жироподобные вещества — липи-ды и другие вещества с меньшей молекулярной массой, которые являются строительным материалом для биополимеров.
Все соматические клетки живых организмов специализированы: клетки костной ткани образуют скелет, клетки крови отве-
468 чают за иммунитет и разносят кислород, нервные — проводят электрические импульсы и т.д. Эмбриональные стволовые клетки «хранят» информацию обо всем организме и «знают», как ею воспользоваться, чтобы размножиться в миллиард клеток растущего живого организма. Эти клетки еще не «включили» механизмы, запускающие специализацию, их геном не начал даже и программу размножения и формирования многоклеточного организма; такая клетка может стать одной из 150 видов зародышевых клеток, а пока она способна только переносить мРНК в следующее клеточное поколение. Из эмбриональных стволовых клеток формируются островки в различных тканях и органах, поэтому все органы построены из специализированных клеток с вкраплениями эмбриональных стволовых. При хранении зародыша в холодильнике при Т= +4°С за 4 — 5 ч все клетки погибнут, кроме эмбриональных стволовых.
В разных организмах число клеток существенно отличается, и по числу клеток все живые организмы делят на царства: бактерии, грибы, растения и животные. Самые древние ископаемые организмы — это одиночные клетки, значит, и эволюция жизни сопровождалась усложнением структуры и числа клеток.
Одноклеточные организмы, имеющие самое простое строение и под микроскопом похожие на точки, называются монерами (от греч. moneresпростой), или бактериями. Внешне они похожи на сферы, спирали и палочки. Разнообразие химического состава позволяет им существовать в разных условиях, самим синтезировать пищу из двуокиси углерода и энергии, получаемой из разных химических реакций или света. Некоторые бактерии используют пищу, вырабатываемую другими организмами, обитая в живых организмах или трупах, способствуя их разложению на более простые компоненты и возвращению их в круговорот веществ в природе. Бактерии могут и оберегать нас от инфекций. Некоторые из них используются в качестве консервантов, на бактериальном брожении основаны процессы квашения капусты, приготовления маринадов, простокваши, кефира, уксуса и пр. Многие бактерии воспринимаются живыми организмами как яды, поскольку они вырабатывают соответствующие
469

токсины (например, ботулизм). Быстрая эволюция бактерий обусловлена их быстрым размножением.
Одноклеточные организмы с более сложной структурой относят к царству водорослей, или проститов. При рассмотрении планктоновых организмов под микроскопом можно выделить зеленые или желтые тельца — хлоропласты, осуществляющие фотосинтез. Среди водорослей есть и простейшие многоклеточные организмы. У диатомовых водорослей каждая отдельная особь окружена клеточной оболочкой, пропитанной кремнеземом — веществом, из которого состоят песок и стекло. Большие пласты диатомей расположены у земной поверхности и используются как абразивный материал. Другие простейшие многоклеточные — динофла-геллаты — имеют жгутики на оболочке, которые проталкивают их через воду. Среди них есть виды, испускающие свет, или люминесцирующие. Некоторые вырабатывают смертельный яд для человека — нейротоксин. Ими питаются моллюски, поэтому при увеличении численности этих проститов (они содержат красный пигмент, и прилив приобретает красный оттенок) опасно употреблять моллюски в пищу.
Есть виды, которые накапливают азот, калий и иод, поэтому обладают большой пищевой ценностью для животных. Многие водоросли покрыты студенистым веществом, позволяющим им сохранять влагу, если они находятся в зоне отлива. Из него получают агар, служащий основой питательных сред для выращивания бактерий и грибов. Альгинат, выделяемый из бурых водорослей, используют для предотвращения образования кристалликов льда при изготовлении мороженого.
В докембрийских отложениях обнаружены останки многоклеточных. Клетка с этого времени стала воспроизводить не только свою структуру, но и организацию многоклеточного организма. Возник онтогенез — индивидуальное развитие многоклеточной особи, и степень его совершенства стала определять верность воспроизведения клеточной организации. В процессе эволюции животные становились крупнее, их организмы усложнялись и клетки все более специализировались. Уже у водорослей клетки специализируются: одни отвечают за фотосинтез, другие — за размножение и т.д.
К многоклеточным организмам надцарства эукариотов относят растения, грибы и животных. Биологи классифицируют живые организмы в связи с их эволюционным родством, поэтому считается, что многоклеточные имели своими предками простаты, а те произошли от монер. Но эти три многоклеточных царства произошли от разных проститов.
Вирусы в 50 раз меньше бактерий (20—300 нм). Они обладают генетическим материалом (ДНК или РНК), т. е. их структура способна воспроизводить себя, но лишь в чужой клетке. Проникнув в нее, вирусы как бы отключают хозяйскую ДНК и заставляют ее производить только вирусы. Русский ботаник и микробиолог Д. И. И-вановский выделил инфекционный экстракт из растений табака, пораженных мозаичной болезнью (1892). Когда экстракт пропусти-
470

ли через фильтр, инфекционные свойства остались в отфильтрованной жидкости. Нидерландский микробиолог М. Бейеринк ввел в 1898 г. в научный оборот термин «вирус» (от лат. virus— яд), чтобы подчеркнуть их инфекционную природу. Впоследствии выяснили, что вирусы по химической природе являются нуклеопротеи-нами, но размеры этих частиц (меньше половины длины световой волны) не позволяли исследовать их в световом микроскопе. Многие не считают вирусы живыми. Существуют вирусы, нападающие на бактерии, — бактериофаги. Считают, что вирусы произошли от нуклеиновой кислоты, потерявшей способность воспроизводить себя вне клетки-хозяина и приобретшей паразитический «образ жизни».
Вирусы герпеса или гриппа имеют специальную защитную оболочку, образованную из мембраны клетки-хозяина. Оболочки вирусов часто построены из повторяющихся субъединиц, способных кристаллизоваться и образующих высокосимметричные структуры. Эти вирусы поражают лимфоидную ткань и вызывают у человека различные ОРЗ. Вирус табачной мозаики, с которого началось изучение вирусов, содержит РНК и 2130 белковых субъединиц, которые вместе с РНК образуют структуру со спиральной симметрией.
Многоклеточная организация не только повышает эффективность поглощения света фотосинтезирующими бактериями, но дает и другие преимущества. Каждая группа многоклеточных организмов (растений, животных и грибов) имеет свой план строения, приспособленный к своему образу жизни, а у каждого вида в процессе эволюции сложилась определенная разновидность этого достаточно гибкого плана. Классификация Линнея основывалась на сходстве строения. Когда поняли, что все организмы связаны с какими-то древними формами жизни, появилась классификация на основе эволюционного родства — эволюционная теория. Поскольку внешнее сходство свидетельствовало о наличии родственных связей, обе классификации оказались похожими. Сейчас существуют разные комиссии по классификации животных, растений и бактерий.
Наличие слаженной системности в клетке (ядро, рибосомы, митохондрии и др.) отражает системность и на уровне многоклеточных организмов. Это — совокупность сосудистой, дыхательной, нервной, пищеварительной систем. По концепции русского физиолога П. К. Анохина, эта функциональная системность, когда функционирование одних частей или систем невозможно без содействия других, обеспечивает целостность каждой системы, когда процессы на низших уровнях организации определяются функциональными связями на высших уровнях. Вся история развития живого организма, физиологии животных и человека подтверждает наличие функциональной системности на онтогенетическом уровне.
Тканевый подуровень представлен тканями, объединяющими клетки определенного строения, размеров, расположения и сход-
471

ных функций. На этом уровне происходит специализация клеток. Ткань образуют клетки одного типа. Ткани возникли вместе с многоклеточностью в филогенезе. У многоклеточных они образуются в онтогенезе как следствие дифференциации клеток. У животных несколько типов тканей: костная, образующая скелет, мышечная, из которой состоит сердце, или эпителий (от греч. epiна, над, сверх + thele— сосок), покрывающий тот или иной орган и выполняющий защитную, выделительную и всасывающую функции (например, кожа). У растений различают меристематическую, защитную, основную и проводящую ткани.
Органный подуровень представлен органами организмов. Все функции осуществляются различными органами. Каждый орган состоит из многих тканей, каждая ткань образуется особыми клетками. При большом увеличении в клетках можно обнаружить органеллы, выполняющие свой набор функций. В ядре хранится генетическая информация; в секреторных (от лат. secretio— отделение) гранулах запасаются вещества, которые впоследствии выделяются из клетки. Наружная мембрана контролирует поступление веществ внутрь клетки и выход из нее. Органелла выполняет свою функцию через серию сопряженных химических реакций, каждая из которых катализируется ферментом (от лат. fermentum— закваска). Органелльная организация клетки играет важную роль в ее функционировании, иначе упорядоченная активность клетки была бы невозможна.
Организменный подуровень представлен самими организмами. На этом уровне происходят декодирование и реализация генетической информации, создание структурных и функциональных особенностей, свойственных организму данного вида.
Популяционный подуровень отражает надорганизменную систему, обладающую определенным генофондом и определенным местом обитания. В популяциях начинаются эволюционные преобразования и выработка адаптивной формы.
Видовой подуровень определяется видами животных, растений и микроорганизмов. В составе одного вида может быть много популяций, поскольку представители вида могут иметь много мест обитания и занимать разные экологические ниши. Вид является единицей классификации живых существ и продуктом эволюции. Одни виды могут сменять другие.

12.2. Строение и функции основных органелл клетки

Ядро — основная часть клетки. В ядре различают ядрышко, кариоплазму и хроматин.
Ядро расположено в центре клетки, окружено ядерной мембраной и содержит ДНК. Под электронным микроскопом ядро беспорядочно зернисто, а в одной его части зернистость резко возра-
472

стает, образуя ядрышко (иногда их несколько) — скопление рибо-сомальных белков и частей рибосом (рРНК), в основе которого лежит участок хромосомы, определяющий ее структуру и несущий ген. В растительных и животных клетках ДНК присутствует в виде структур размером около 1 мкм — хромосом (от греч. chromaцвет, краска), число которых постоянно для каждого вида. Хромосомы — это самостоятельные ядерные структуры, состоящие из двух продольных нитевидных половинок — сестринских хроматид (по внешнему виду их разделяют на равноплечие, неравноплечие и палочковидные). Клеточное ядро окрашено ядерными красителями почти равномерно, в микроскоп видна только его зернистость. Основные красители связываются нуклеиновыми кислотами. Кариоплазма — жидкая фаза ядра, в которой находятся растворенные продукты жизнедеятельности.
Ядру, содержащему хромосомы (с ДНК), принадлежит ведущая роль в явлениях наследственности (см. гл. 11).
Цитоплазма — это живая часть клетки, помимо ее ядра. Снаружи она окружена клеточной мембраной, а внутри — ядерной. Пространство между ядром и внутренней поверхностью плазматической мембраны заполнено нитями клеточного матрикса, который определяет форму клетки и принимает участие в функциях, связанных с движением (деление клетки и ее перемещения, внутриклеточный транспорт везикул и органелл). Кроме того, матрикс обеспечивает структурную основу метаболизма, определяя пространственное размещение молекулярных компонентов клетки, занятых в процессе жизнедеятельности. В ее состав входят рабочие части клетки: рибосомы, эндоплазматическая сеть (ЭПС), пластиды, лизосомы и пр. Среди клеточных органелл особую роль играют хлоропласты клеток зеленых растений и митохондрии любых организмов. В хлоропластах происходит связывание энергии солнечного света в процессе фотосинтеза. В митохондриях же извлекается энергия, заключенная в химических связях поступающих в клетку питательных веществ.
Митохондрии (отгреч. mitos— нить + chondrionзернышко, крупинка) — энергостанции клеток — наблюдали в световой микроскоп как самые крупные клеточные органеллы. Они входят в состав любой клетки, по строению похожи на клетки прокариот, имеют округлую форму, а при соединении нескольких рядом могут выглядеть как нити длиной менее 1 мкм. Внутри митохондрий находятся окислительные ферменты, РНК, ДНК и ризосо-мы, отличающиеся от цитоплазматических. В их мембраны встроены ферменты, участвующие в процессах преобразования энергии пищевых веществ в энергию АТФ, необходимую для жизнедеятельности (см. гл. 11). В клетках растений имеются пластиды (хлоропласты, хромопласты и лейкопласты), которые тоже имеют двухмембранное строение, как и митохондрии.
473

Хлоропласты (от греч. chloros — зеленый + plastos — вылепленный, образованный) — особые органеллы в растительных клетках. Пигмент, окрашивающий их в зеленый цвет и поглощающий энергию солнечного света, назван хлорофиллом (от греч. ...phyllon — лист). При его участии хлоропласты синтезируют из воды и двуокиси углерода глюкозу — основное органическое вещество, которым питается все живое. Без процесса фотосинтеза вряд ли была бы возможна жизнь. С помощью электронного микроскопа установлено, что хлоропласт окружен двойной мембранной оболочкой, как и митохондрии. В ней заключено основное вещество — строма (от греч. stroma — подстилка), заполненная множеством пластинчатых структур — ламелл, которые расположены парами, на концах слипаются и окружают каждую цистерну, в хлоропластах сильно утолщены. В строме видны и крупные белые гранулы — крахмальные зерна; значит, здесь продукт фотосинтеза — глюкоза — сразу же переводится в нерастворимый крахмал. Выяснение связи структуры хлороплас-тов с их функциями важно для осуществления реакции фотосинтеза «в

пробирке» и возможности управлять этим процессом, что явится одним из шагов на пути избавления человечества от забот о пропитании.
На рис. 12.3, а показан спектр солнечного излучения, на котором выделены участки поглощения молекул воды и углекислого газа; на рис. 12.3, б, в — структурная формула молекул хлорофилла и спектральные области его активного поглощения.

Реснички и жгутики относят к органоидам движения. Они представляют собой выросты мембран размером около 0,25 мкм, внутри которых находятся тоненькие трубочки. Такие органоиды есть у многих
475

клеток — простейших, одноклеточных водорослей, сперматозоидов, в клетках дыхательного эпителия.
Эндоплазматическая сеть (ЭПС) — это сеть каналов в цитоплазме всех клеток, составляющая до 30— 50 % объема клетки. По ЭПС синтезированные вещества транспортируются в аппарат Гольджи; сеть делит клетку на отсеки и даже участвует в синтезе белков. Гранулярная ЭПС состоит из мембранных мешочков, покрытых рибосомами, на них синтезируются белки, которые потом поступают внутрь каналов, где приобретают третичную структуру. На мембранах гладкой сети синтезируются липиды и углеводы, поступающие затем тоже внутрь каналов.
Аппарат Гольджи (АГ) — система полостей, каналов, пузырьков, образованная гладкими мембранами. Эта органелла, обнаруженная во всех эукариотических клетках, состоит из множества хорошо уложенных мешочков, которые содержат олигоса-хариды — длинные цепи из простых Сахаров. Стопки АГ обладают прецизионной внутренней структурой из трех отделов, специализирующихся на разных типах модификации белков. Белок, проходя через них, химически модифицируется в соответствии со своим предназначением, белки сортируются и отправляются по нужному адресу.
АГ наиболее ярко выражен в железистых тканях, поэтому посчитали, что он связан с железами внутренней секреции. В пузырьках накапливаются вещества, которые синтезируются и транспортируются по сети. В АГ эти вещества подвергаются химическим превращениям, потом упаковываются в мембранные пузырьки и выбрасываются из клеток в виде секретов. В структуре АГ образуются лизосомы. В железистых клетках неподалеку от диктосом, на которые может распадаться структура АГ, особенно много митохондрий. Если блокировать клеточное дыхание, пузырьки Гольджи не отделяются от диктосом, и прекращается образование клейкой слизи, выделяемой раньше и состоящей из углеводов. Низкомолекулярный сахар полимеризуется в макромолекулы и выделяется. Дик-тосомы участвуют в сборке полисахаридов. Так, в них у мяты образуются эфирные масла, т.е. синтез материала клеточной оболочки — одна из основных функций диктосом.
Изучение диктосом позволило проследить за процессом выделения клетки. При соприкосновении со своей элементарной мембраной пузырька Гольджи диктасомы как бы сливаются друг с другом, и в месте соприкосновения образуется «ямка». Пузырек, похожий на шарообразный кувшин, повисает на плазмолеме, а содержимое «кувшина» как бы выдавливается из него. Так выводится содержимое бывшего пузырька Гольджи из клетки. Чтобы избежать хаоса биохимических процессов, каждый из множества новообразованных белков должен быть определенным образом модифицирован, отсортирован и с большой точностью доставлен в соответствующий отдел. Перемещения макромолекул в клетке связаны с АГ.
Вакуоли — пространства, заполненные клеточным соком. В них часто растворены вещества, образующиеся в клетках как
476

своего рода отходы обмена веществ, так как растения не имеют специальной выделительной системы, как животные и человек. Получить их фотографии трудно, потому что на границе между густой цитоплазмой и жидким содержимым вакуоли при фиксации возникает разрыв.
Выше перечислялись и как-то связывались с составом и строением компонентов клетки их основные функциональные особенности. Конечно, частично они перекрываются, но синтез белка, траспортирование, дыхание, фотосинтез, наследственность не исчерпывают всех процессов жизнедеятельности клетки. Во всех клетках можно выделить большое число разных пузырьков, гранул, пластинок, нитевидных структур и т.п., которые все время меняются и по внешнему виду, и по составу — лизосомы, фраг-мосомы и т.д. Поскольку перечисленные выше функции относятся, скорее, к процессам синтеза, то разумно предположить, что для равновесия клетки должны быть подвержены и процессу распада. Реакции разложения катализируются многими ферментами, их деятельность строго контролируется, чтобы они не мешали синтезу.

12.3. Функции клеточных мембран. Работа «ионного насоса»

Клеткам присуще мембранное строение — это одно из положений клеточной теории. Среди мембранных органоидов — наружная цитоплазматическая мембрана (НЦМ), эндоплазматиче-ская сеть (ЭПС), аппарат Гольджи (АГ), лизосомы (Л), митохондрии (М), пластиды (П). В основе всех этих органелл лежит биологическая мембрана, все они имеют единый план строения. Мембранные структуры — арена важнейших жизненных процессов.
Биологическая мембрана (клеточная или плазматическая) — пленка, покрывающая клетку, и настолько тонкая, что ее удалось обнаружить лишь с помощью трансмиссионного электронного микроскопа. Все мембраны построены по одному плану, всегда слоистые. Поперечный разрез показывает, что по обе стороны внутренней, более светлой линии расположены более темные. Мембраны были открыты более века назад, но их роль в механизмах жизнедеятельности клеток до недавнего времени сводили в основном к барьерной функции. Опыты показали, что малые молекулы быстрее усваиваются живой клеткой, чем большие, и вещества, растворимые в воде и нерастворимые в жирах, проникают в клетку медленнее, чем растворимые в жирах. Значит, мембраны содержат жироподобные вещества — липиды и белки, способные связывать воду.
Липиды в мембранах содержат фосфорную кислоту, потому их называют фостатидами. Пример — лецитин. Капля такого ли-
477

пида мгновенно растекается по водной поверхности, и пленка образует мономолекулярный слой. Они обладают водоотталкивающими, или гидрофобными (от греч. phobos— страх, боязнь), свойствами. Фосфорная кислота растворима в воде, или гидрофильна (от греч. philia— любовь). Она как бы притягивает воду, а водоотталкивающие остатки жирных кислот, расположенные на другом конце молекулы, как бы избегают ее. Так как гидрофобные концы липидных молекул не могут сближаться ни с клеточной оболочкой, ни с протопластом, они обращены друг к другу «головами». Так образуется бимолекулярный слой, у которого наружу выставлены гидрофильные части. Дополнительные гидрофильные белки в мембране повышают устойчивость описанного выше липидного бимолекулярного слоя.
Структуру мембран — внутри «масло» (двойная липидная пленка), снаружи «хлеб» (белковая оболочка) — называют сэндвич-структурой. Такую структуру химики могут получать искусственно.
Мембрана — двухмерно ориентированный раствор разных белковых молекул и белковых кластеров из нескольких сотен молекул в вязком слое. Белковые молекулы в большинстве своем свернуты в клубки (глобулы) и асимметричны. Их выступающие из мембраны части обладают электрическими зарядами, причем на внешней поверхности суммарный заряд оказывается отрицательным. Молекула фосфолипидов сильно асимметрична. Одна ее часть несет электрические заряды, образуя «полярную» головку, другая — электронейтральный углеводородный «хвост». В водной среде полярные головки выступают из воды, а углеводородные хвосты, из-за гидрофильных и гидрофобных взаимодействий погружаются. Так как все белки участвуют в диффузном движении, их распределение по мембране в каждый момент случайно. Коэффициент диффузии белковых молекул по мембране порядка 5 • 10-14 м2/с, а для гемоглобина в водном растворе — на три порядка больше. Значит, вязкость мембранной фазы на три порядка больше, чем у воды. Некоторые белки способны только к поступательному перемещению, другие могут вращаться в плоскости мембраны, есть и такие, которые перемещаются с одной стороны мембраны на другую. Последние участвуют в транспортировании веществ через мембрану.
Ионный перенос — проявление мембранной возбудимости. Через мембрану осуществляется обмен с внешней средой — питание и выделение отходов. Несмотря на хаотические движения, молекулы стремятся переместиться в сторону меньшего давления (перемещение по градиенту давления, или концентрации, называют диффузией). Мембрана обеспечивает стабильность химического содержимого клетки и, обладая избирательной способностью, регулирует обмен с окружающей средой. Вещества, растворимые в липидах, проходят через мембрану, не растворяясь в ней. Пере-
478

мещение ионов и органических мономеров типа аминокислот и глюкозы происходит много быстрее, чем этого можно было бы ожидать от полярных молекул. Имеет место и перемещение против градиента концентрации — так называемый активный транспорт, требующий затрат энергии. Наиболее изу  чен такой активный транспорт: процесс откачки ионов натрия из клетки и накачки в нее ионов калия, в котором «Na—К — насос» использует энергию АТФ (рис. 12.4). Этим путем откачиваются ионы натрия из клетки и накачиваются ионы калия против градиента концентрации.
Специальные белковые молекулы в мембране переносят различные вещества. Так, с их помощью клетки печени, эритроциты и мышечные клетки быстро поглощают глюкозу. В настоящее время выяснены пять молекулярных форм переносчика глюкозы, причем каждая из них приспособлена к нуждам той ткани, в которой она содержится. Посредством такой облегченной диффузии вещества могут выводиться из клеток. Через мембрану осуществляется и пассивный транспорт. Таков осмос — прохождение воды через полупроницаемую мембрану. Могут через нее путем диффузии проникать вещества, растворимые в липидах (жирные кислоты и эфи-ры), и некоторые ионы.
Клеточная мембрана, помимо барьерной функции, обеспечивает обмен между цитоплазмой и внешней средой, из которой в клетку поступают вода, ионы, различные молекулы, а выводятся продукты обмена веществ и синтезированные в клетке вещества. Транспортные функции не ограничиваются маленькими молекулами. Благодаря фагоцитозу, открытому и описанному И. И. Мечниковым (1882), в клетку могут проникать и крупные молекулы биополимеров. Твердая частица, оказавшаяся вблизи клетки, окружается выростами мембраны и затягивается внутрь. Процесс фагоцитоза свойствен простейшим, лейкоцитам, клеткам капилляров костного мозга, печени, надпочечников, селезенки. Существует и еще один вид активного транспорта — пиноцитоз. Таким путем происходит поглощение клеткой жидкости в виде мелких капель с растворенными в них высокомолекулярными веществами. Капли захватываются выростами мембраны, погружаются в цитоплазму и усваиваются. Это явление свойственно животным клеткам.
Регулируя обмен между клеткой и окружением, мембраны обладают рецепторами, воспринимающими внешние сигналы (свет, движение бактерий к источнику пищи, ответы на гормоны). Безусловно, важно, что на них происходит превращение энер-
479

гии. Так, на внутренних мембранах хлоропластов происходит фотосинтез, а на внутренних мембранах митохондрий — окислительное фосфорилирование. Компоненты мембран движутся и перестраиваются, поскольку созданы из белков и липидов, что определяет одно из важнейших свойств живого — раздражимость.
Роль мембран стала вырисовываться иначе после того, как английские ученые химик Д. Кроуфут-Ходжкин и физиолог А. Хаксли сформулировали теорию проведения нервного импульса (1952), а Е.Сюзерленд открыл (1972) существование на возбудимой мембране переносчика информации внутрь клетки (молекулы цАМФ — циклического аденозинмонофосфата). Этот вопрос еще недостаточно изучен и является предметом особого интереса, так как через познание механизма функционирования возбудимых мембран лежит путь к диагностике и лечению многих болезней.
Возбудимость — реакция клетки на воздействие, происходящая с многократным усилением по энергии. Возбудимость — общее свойство клеток, не только сердечных, мышечных или нервных. Состояние мембраны отражает состояние клетки в целом. Возбудимыми называют мембраны, окружающие клетку и способные менять свою проницаемость для ионов при различных химических и физических воздействиях. Функционирование таких мембран обеспечивает не только внутриклеточную регуляцию, но и управление и синхронизацию работы соседних клеток и даже органов с помощью химических и электрических каналов связи, которые составляют основу гормональной и нервной регуляции. Основные компоненты этих систем находятся в мембранах.

12.4. Процессы фотосинтеза и клеточного дыхания

От фотосинтеза, который делает энергию и углерод доступными для живых организмов и обеспечивает выделение кислорода в атмосферу, зависит все живое на Земле. Менее 1 % солнечной энергии, падающей на Землю, поглощается растениями. Они связывают углекислый газ атмосферы (и воду) в количестве около 150  1012 кг сухого органического топлива в год, или порядка 1 кг сухого вещества с 1 м2 за год. Часть этого органического вещества поглощается травоядными животными, которыми, в свою очередь, питаются другие животные и человек. Растительные и животные остатки разлагаются бактериями и грибами до уровня исходных неорганических веществ. Затем этот круговорот замыкается: энергия солнечного излучения, поглощенная растениями, переходит в теплоту и излучается Землей в космическое пространство. И жизнь на Земле есть процесс поглощения солнечного света. Человечество зависит от фотосинтеза и потому, что оно использует ископаемое энергетическое топливо, образовавшееся за
480

миллионы лет. Годовая фиксация углерода в процессе фотосинтеза оценивается в 75 • 1012 кг. Из общего количества солнечной радиации, попадающей на Землю, до поверхности доходит примерно 50 %, а из нее только 25 % лучей имеют длины волн, подходящие для фотосинтеза, 1 % энергии доходит до растений, а 0,4 % используется ими для увеличения своей биомассы (рис. 12.5).
Автотрофные («самопитающиеся») организмы осуществляют фотосинтез, не питаясь другими организмами. Такие есть среди бактерий, источник энергии для них — химические реакции. Но запасы химической энергии на Земле ничтожны по сравнению с энергией, поступающей от Солнца.
В конце XVIII в. считали, что растения получают питательные вещества из воды, находящейся в почве. Голландский естествоиспытатель Ян ван Гельмонт первым проделал опыт по изучению процесса питания растений. Он посадил дерево ивы массой 2,3 кг в кадку с землей массой 90,8 кг, поливал его и лишь через пять лет обнаружил, что масса почвы почти не изменилась, а дерево выросло и стало весить 76,9 кг. Английский химик Дж. Пристли, открывший кислород (1774) и получивший хлористый водород и аммиак, обнаружил, что растения и животные по-разному меняют состав окружающего их воздуха. Помещая в закрытый сосуд горящую свечу и мышь, он отметил, что свеча гасла, а мышь из-

Рис. 12.5. Распределение мощности солнечного излучения, падающего
на Землю дыхала. Но, когда он помещал в сосуд живое растение, свеча после этого какое-то время горела, хотя сосуд был по-прежнему закрыт. Так Пристли установил, что «в растениях присутствует что-то способное исправлять воздух, испорченный горением свечи». В 1782 г. Ж. Сенебье сумел показать, что растения поглощают С02 и одновременно выделяют 02.
К началу XIX в. было выяснено, что растения могут выделять кислород только на свету, отсюда и название — фотосинтез (рис. 12.6). Австрийский врач Я.Ингенхауз написал первое уравнение процесса, не зная еще, какие растительные ткани образуются. При использовании микроскопа нашли, что крахмальные зерна при фотосинтезе растут. Отсюда предположение, что при фотосинтезе возникают углеводы, имеющие своим источником С02.
Исходные соединения для фотосинтеза — неорганические вещества: вода и двуокись углерода. Они энергетически бедны, но
482 из них строятся более сложные богатые энергией питательные вещества. В качестве побочного продукта фотосинтеза вьщеляется молекулярный кислород. Процесс фотосинтеза обычно представляют уравнением: 6С02 + 6Н20 = С6Н,206 + 602.
Реакция идет за счет энергии света и хлорофилла, и получаются молекулы кислорода и сахара (рис. 12.7). В 1941 г. с помощью масс-спектрометра методом изотопов было установлено, что источником кислорода служит вода. (Обычно кислород имеет массовое число 16, но есть и стабильный изотоп с массовым числом 18.) Оказалось, что на первой стадии фотосинтеза водород получается путем расщепления воды. Энергию для этого растения берут у света (реакция фотолиза), выделяя кислород как ненужный побочный продукт. Во второй стадии водород соединяется с двуокисью углерода и образуется углевод. Присоединение водорода — один из примеров реакции восстановления. Для первой стадии характерны световые реакции, для второй свет не нужен; хотя они тоже происходят на свету (рис. 12.8), их называют тем-новыми.
483 В конце 50-х гг. выяснили, что каждая из стадий реакций фотосинтеза происходит в разных частях листа: первая — в мембранах хлоропластов, вторая — в их строме. Арион показал (1958), что первая стадия во многом аналогична дыханию, при котором происходят фосфорилирование АДФ с затратами энергии, перенос электронов в мембранах и преобразование световой энергии в химическую. Дыхание у растений — процесс окисления углеводов с освобождением энергии, необходимой для жизнедеятельности, он происходит в митохондриях. У аэробных организмов поглощается 02 и выделяется С02. Выделенная энергия идет на синтез АТФ. Поэтому процессы дыхания у растений и фотосинтез — две стороны обмена веществ: диссимиляции и ассимиляции.
Немецкий ученый Т. Энгельман в конце XIX в. показал, что зеленый пигмент хлоропластов — хлорофилл — важен в процессе фотосинтеза. Экспериментируя с водорослью спирогирой, он определил области спектра света, в которых выделение кислорода идет наиболее эффективно. Ими оказались красные и синие области, поглощаемые именно хлорофиллом, обеспечивая ему зеленый цвет. Другие пигменты хлоропластов (они имеют желтую или бурую окраску, наблюдаемую у листьев осенью, когда хлорофилл разрушается и уже не маскирует цвет листа) играют вспомогательную роль в этом процессе, перенося энергию. Английский ученый Дж. Стоукс установил, что зеленый растительный пигмент состоит из смеси различных веществ (1864). Русский физиолог и биохимик М. С. Цвет исследовал их с помощью изобретенного им метода хроматографии. Немецкий химик и биохимик
484

Р. Вильштеттер разработал методы извлечения растительных экстрактов без повреждения молекул и детально исследовал хлорофилл, обратив внимание на аналогию с гемоглобином крови. Его работы по изучению структуры хлорофилла продолжил химик-органик X. Фишер.
Синтезировать молекулу хлорофилла удалось только в 1960 г. А. Калояну, Г. Колеру и Р. Вудворду. Все эти исследования с хлорофиллом важны для консервации зеленых кормов, в которых потери питательных веществ обычно составляют более 50 %. При определенной дозировке серной и соляной кислот, прекращающих процессы окисления в растительной массе, удалось обеспечить почти полное сохранение витаминов и белков. Выдающуюся роль в решении этих проблем сыграл финский биохимик А. Виртанен, создавший метод консервирования зеленых кормов.
Фотосинтетические пигменты и молекулы, встроенные в мембраны тиколаида хлоропласта (см. рис. 12.3), образуют цепь переноса электронов. Мембраны окружены стромой — основным веществом хлоропласта, которое содержит хлоропластную ДНК, рибосомы и ферменты, участвующие в фиксации углерода. Снаружи стромы окружены двойной мембраной, отделяющей хлоропласт от цитоплазмы клетки. Пигмент хлорофилл уникален: при поглощении солнечной энергии один из электронов отрывается от своей молекулы, а затем передается по электронтранс-портной цепи от одного переносчика к другому. Эти электроны замещаются путем разложения воды и разделения ее водородных атомов на ионы водорода и электроны. При этом для получения одной молекулы кислорода должны разложиться две молекулы воды, и останется четыре протона внутри тиколаида. Почти весь кислород в земной атмосфере возник именно таким образом.
Электроны, пройдя по электронтранспортной цепи, присоединяются к молекуле-переносчику, которой служит НДЦФ+, переходящий в восстановленную форму НАДФ+Н. Этот процесс происходит на наружной поверхности мембран. Ионы водорода, пройдя по каналам в мембране на наружную сторону, приобретают энергию за счет электрохимического потенциала для синтеза АТФ. Последние используются в серии реакций, которые «фиксируют» С02 в форме углеводов. Сначала С02 присоединяется к органической молекуле — пятиуглеродному сахару, переводя ее в нестабильную шестиуглеродную форму. Она очень быстро распадается на две трехуглеродные молекулы, которые принимают по фосфатной группе от АТФ; эти группы присоединяются высокоэнергичной связью, обогащая энергией всю молекулу. После передачи энергии молекуле связи рвутся, и каждая молекула присоединяет по одному атому водорода от НАДФ+Н. В то же время происходит перенос четырех протонов с наружной стороны мембраны во внутреннюю. Одновременно протекает несколько таких однотипных реакций, и они идут по циклам.
Знаменитые опыты с хлореллой в 1946 г. провел американский биохимик М. Калвин. Он помещал зеленые водоросли в специальный сосуд и освещал их, одновременно пропуская С02 через воду,
485

меченую изотопом С-14. При освещении изотоп включался в цепь фотосинтеза. При изменении времени облучения (от 1 до 30 с) последовательно прослеживались разные этапы фотосинтеза. Калвин показал, что двуокись углерода фиксируется в форме фос-фоглицериновой кислоты. Это было открытие — углерод просто подключался к одному из известных звеньев цепи углеводного обмена. Так было доказано, что углерод входит в состав глюкозы и других сложных Сахаров. В последующем Калвин продолжал работы по применению открывшейся ему тайны фотосинтеза в повышении урожайности и развитию «зеленой энергетики».
Водоросли, составляющие огромную группу растений, являются фо-тосинтезирующими организмами, выделяющими кислород. Они эволюционировали в водной среде и освоили ее. Считают, что из синезеленых водорослей произошли все хлоропласты растений. На долю океана приходится 50 % мировой первичной продукции в виде фиксированного углерода, и ее образуют водоросли, хотя фотосинтез происходит только в поверхностных слоях, куда проникает солнечный свет и где лимитирующим фактором является доступность биогенных элементов, особенно азота и фосфора. С водорослей начинаются почти все пищевые цепи (планктон, рыбы). Благодаря фотосинтезу поддерживается уровень кислорода в атмосфере, 50 % которого поставляют водоросли. Найдены ископаемые остатки синезеленых водорослей, живших 3 млрд лет назад, а первые организмы, освоившие сушу, возникли лишь 420 млн лет назад. Вероятно, при переходе на сушу главной проблемой было обезвоживание — нужно было выработать приспособления для добывания и запасания воды. Для фотосинтеза и дыхания нужно, чтобы обмен двуокиси углерода и кислорода происходил не с окружающим раствором, а с атмосферой. Проблематично было и размножение растений без воды и питания. На суше фотосинтез происходит над поверхностью земли на свету, а минеральные соли и вода находятся в земле, поэтому часть растения должна быть в темноте под землей, а часть — в воздухе. Кроме того, водная среда обеспечивает постоянство условий внешней среды, а воздух более подвержен изменениям таких параметров, как температура, интенсивность освещения, концентрация ионов в среде и кислотность рН.
В настоящее время выявлены молекулярные механизмы одного из типов фотосинтеза у бактерий. Спектроскописты определили последовательность и временные параметры световых реакций фотосинтеза и скорости взаимодействий. Пикосекундная абсорбционная спектроскопия позволила разрешить временные интервалы до триллионной доли секунды. Интенсивности двух лазерных лучей, проходящих через исследуемую кювету, были столь малы, что не нарушали процессов фотосинтеза, короткая вспышка только инициировала фотосинтез почти одновременно во всех частях исследуемой области. Световой луч контролировал изменение состава образца.
Удалось проследить путь электрона от одной мембраны до другой вследствие поглощения фотона. Специалисты по рентгено-
486

структурному анализу расшифровали пространственную структуру области, где происходят световые реакции, и выяснили взаимное расположение в ней различных молекул. Молекулярные генетики установили локализацию и организацию генов, кодирующих основные компоненты в этой области, так что теперь можно манипулировать этими генами. Д. Юван сумел так изменить их, что получил бактерии, отличающиеся от обычных. Это открывает новые возможности генной инженерии и позволяет досконально понять процессы. Особенностью фотосинтеза этих бактерий было отсутствие выделения кислорода в отличие от зеленых растений, но в фотосинетезе принимают участие те же молекулы хлорофилла. Интерес к этим бактериям связан с тем, что они получают необходимую энергию разными способами, а не только от света.
Хемосинтез — процесс синтеза органических веществ из неорганических за счет энергии химических реакций, протекающих при окислении неорганических веществ. Хемотрофы — бактерии тарификаторы, серобактеры, железобактеры и пр. — в качестве источника водорода используют не воду, а Н2 или H2S, поэтому они кислород не выделяют. И за счет только процесса хемосинтеза аэробные организмы жить не смогли бы.
На клеточном уровне организации действуют управляющие ее работой механизмы (рис. 12.9).

487

12.5. Формирование идей эволюции в биологии

Развитие во времени — неотъемлемое и характерное свойство живой природы. Идеи единства и развития природы можно проследить с древнейших времен. Проблемы происхождения и эволюции жизни на Земле были в центре философских и религиозных систем. Так, Г.Лейбниц, развивая идеи Аристотеля, провозгласил принцип градации и предсказал существование переходных форм между растениями и животными. В России эти идеи активно поддерживал А. Н. Радищев. В дальнейшем этот принцип был развит в представлении о «лестнице существ» от минералов до человека и Бога, доказывая трансформизм живой природы. Так выявлялась не эволюция, а общность и сходство форм и усложнения организмов. Но сопоставлялись время существования Земли и время формирования форм живого на ней. Бюффон обосновывал в своей «Естественной истории» историю Земли и доказывал единство происхождения живого планом строения. Другой энциклопедист, Д.Дидро, считал, что разнообразие органического мира объясняют мелкие изменения живых существ и длительность существования Земли. У Мопертьюи были догадки о корпускулярной природе наследственности, эволюционной роли вымирания неприспособленных форм и роли изоляции в возникновении новых форм. Кант в «Космогонии» говорил о развитии живого мира в течение миллионов лет.
К. Линней считал, что близкие виды внутри рода могли развиться естественным образом без участия высших сил. Эволюционные представления были характерны для К.Вольфа, М.В.Ломоносова и А. Н. Радищева. Ломоносов считал изменения в неживой природе причиной изменений мира живого, по останкам вымерших форм судил об условиях существования их в далекие времена. Он писал, что время, необходимое для создания организмов, больше, чем определяется церковным исчислением. Но эти идеи формировали пока только представление о последовательности природных тел. Ограниченную трансформацию видов допускал Ж. Бюффон, считая, что разные типы животных имеют разное происхождение и возникли в разное время. Эта концепция обобщала многие наблюдения и факты, выделяла идею глубокой взаимосвязи между видами, подвидами, родами и другими таксонами, подготавливая почву для эволюционизма. Так, до конца XVIII в. господствовала мысль о «целесообразности порядков в природе» (сотворении кошек для пожирания мышей и т.п.). Постепенно возникал вопрос о возникновении такой целесообразности. Общество не могло еще воспринять идеи эволюции, так как обсуждались не доступные для проверки масштабы времен.
Идею эволюции живого перевел на уровень теории эволюции Ж. -Б. Ламарк. Он считал, что Бог сотворил материю и движение, а далее развитие происходило по естественным причинам. Опираясь на многочисленные факты изменяемости видов, Ламарк в книге «Философия зоологии» (1809) выдвинул гипотезу о меха-
488

низме эволюции, основанном на двух предпосылках: наследование приобретенных признаков и упражнение или неупражнение частей организма. Он представил эволюционное обоснование «лестницы существ», основанное на принципах градации (внутреннего стремления к совершенству) и изначальной целесообразности реакции организма на изменения внешней среды (признание возможности прямого приспособления). Далее Ламарк формулировал два закона: 1 — изменение привычек следует сразу за изменением условий и 2 — эти изменения передаются по наследству. Основа эволюции — врожденная способность к самосовершенствованию, фактор явно нематериальный: «творить может только Бог, тогда как природа может только производить», а изменения во внешней среде могут изменить формы поведения, поэтому органы или структуры способны приобрести новые функции, а эти новые функции органов и изменения в них могут быть переданы потомкам. Так вытянулась шея у жирафа, увеличились перепонки у водоплавающих, развивается мускулатура при занятиях спортом. Эта часть учения Ламарка отвергалась, как противоречащая появляющимся новым знаниям о механизме наследования, для нее еще не пришло время. Большую роль в возникновении новых видов Ламарк отводил переменам климата и гидрогеологического режима. Политические страсти внутри биологии скомпрометировали важность идей типа «наследуется все благоприобретенное» (она получила название «ламаркизм»). Как подчеркивал К.А.Тимирязев, Ламарк не сумел объяснить целесообразность организмов. Но «роль Ламарка в биологии колоссальна», — отметил современный генетик Л. Н. Серавин (1994).
Предшественником идей Дарвина в России был зоолог К. Ф. Ру-лье, развивавший идеи возникновения органического мира из неорганического. Он выделял наследственность и изменчивость в качестве основных свойств организмов, говорил и о постепенном изменении организмов под влиянием внешних условий.
Учение катастрофизма отражало идеи развития природы, сформировавшейся к началу XIX в. Французский зоолог Ж. Кювье выделял четыре типа животных — позвоночные, мягкотелые, членистые и лучистые. И с каждым из них он сопоставлял некий «план композиции», некую «творящую силу», которая после очередной катастрофы в геологической истории обеспечивает восхождение органических форм. Тем самым геологическую эволюцию планеты Кювье связывал с эволюцией живого, признавая роль катастроф и неравномерности темпов преобразований в природе, что не потеряло своего значения и поныне. Ему возражал У. Смит, один из основоположников биостратиграфии, отмечавший непрерывность распространения сходных видов в близких по возрасту слоях.
Концепцию униформизма сформировали противники теории катастроф. Дж. Геттон, Ч.Лайель, М. В.Ломоносов критиковали идеи
489

Кювье за неопределенность причин катастроф, за укорачивание возраста Земли. Под впечатлением успехов классической механики они считали мир познаваемым и предлагали опираться на преемственность настоящего и прошлого, выделяя непрерывность действия законов и факторов в истории Земли и возможность обратимости явлений (см. гл. 9). При эволюции живого Лайель допускал возможность актов творения, демонстрируя прогрессивные изменения ископаемых останков. Униформисты считали, что вымирание несовместимо с естественным образованием новых видов, и потому предполагали участие творца. Фактически они свели историю планеты к цикличности и случайным изменениям.
Униформизм, как и ламаркизм и катастрофизм, предварял теорию естественного отбора, частично конкретизировал идею эволюции. Английский экономист Т.Мальтус привлек внимание к репродуктивному потенциалу человека и указал на экспоненциальный рост численности населения. В 1788 г. он опубликовал «Трактат о народонаселении», в котором убедительно и ярко обрисовал, к чему может привести ничем не сдерживаемый рост населения. Благодаря Дарвину выражение Мальтуса «борьба за существование» приобрело широкую известность. Они оба считали ее результатом несоответствия между быстрым ростом популяций и ограниченностью пищевых ресурсов. Идеи Мальтуса и Лайеля оказали большое влияние на Ч.Дарвина. Он верил в познаваемость законов природы, в возможности объяснения наблюдений. Дарвин считал проблему происхождения человека связанной с эволюцией неорганического и органического мира. К середине XIX в. в разных областях биологии был накоплен огромный фактический материал, который нуждался в обобщении. Да и практика сельского хозяйства требовала теории, которая бы открыла пути селекции.
Понятие «эволюция» в биологию было введено швейцарским ученым Ш. Боннэ (1762). Он понимал под этим термином не только саму идею развития, но и отмечал изменчивость и некий отбор в становлении форм живого. Ламарк объяснял изменчивость влиянием наследственности и внешних факторов — питанием, климатом, упражнением органов. Дарвин создал в 1859 г. теорию эволюции, обобщив отдельные эволюционные идеи и разрешив накопившиеся противоречия. У него эволюция определяется триадой: наследственность, изменчивость и естественный отбор.
Остовом теории эволюции путем естественного отбора послужил огромный материал, собранный и до Дарвина, и им самим.
Ч.Дарвин, в юности собирающийся стать пастором, интересовался зоологией как любитель. Он предпринял пятилетнее морское путешествие на корабле «Бигль», во время которого занимался геологическими исследованиями, собирал ботанические, зоологические и палеонтологические коллекции. Кульминацией, с точки зрения формирования его эволюционных взглядов, явилось исследование флоры и фауны Галапагосских островов, где он увидел в действии процесс эволюции при сравнении близких видов вьюрков, ящериц, черепах, о чем и написал в своей первой книге (1839). По прибытии в Англию он проанализировал
490

историю селекции и выявил отличия между породами и сортами. Здесь он усмотрел творческое начало в деятельности селекционеров, позволяющее накопить изменения в результате отбора.
Дарвин собрал обширный материал об изменчивости организмов и видов и отметил почти всегда постоянную численность популяций. Способность к размножению, свойственная всему живому, обеспечивает сохранение вида. Численность популяций на Земле контролируется различными факторами среды (пространство, свет, пища, тепло). Исследуя и сопоставляя огромный материал и находясь под впечатлением идеи Мальтуса, Дарвин начал понимать, что при интенсивной конкуренции между членами популяции любые изменения, благоприятные для выживания в данных условиях, повышают способность особи к размножению и оставлению плодовитого потомства. Но каждый вид производит больше особей, чем выживает их до взрослого состояния, а среднее число взрослых особей почти постоянно. Ненужные формы при этом отбрасываются путем нового механизма — естественного отбора. Черновой вариант своей теории он сделал в 1842 г.
Понятиям изменчивость и наследственность, которые Ламарк связывал с приспособляемостью, передаваемой по наследству и являющейся основой видообразования, Дарвин придал принципиальное значение. Определенная изменчивость — это способность всех особей определенного вида одинаковым образом реагировать на изменения среды, при этом изменения в организмах не наследуются (сейчас это — адаптивная модификация). Неопределенная изменчивость приводит к существенным изменениям в организме, которые наследуются с усилением в следующих поколениях (мутация, по современной терминологии). Она тоже связана с условиями окружающей среды, но не непосредственно. Дарвин считал, что именно такая изменчивость играет ведущую роль в эволюции.
Естественный отбор — механизм эволюции, материал для него — наследственная изменчивость. В нем Дарвин соединил многие биологические знания, в том числе опыт практической селекции.
А. Уоллес, один из основоположников зоогеографии, много путешествовавший по Южной Америке и Юго-Восточной Азии, тоже читал Мальтуса и пришел к идеям, близким к теории Дарвина. Уоллес и Дарвин выступили с сообщениями о роли естественного отбора в эволюции на заседании Линнеевского общества. В 1859 г. Дарвин опубликовал свою книгу «Происхождение видов путем естественного отбора», она разошлась в первый же день, и, говорят, по своему воздействию на человеческое мышление уступала только Библии. Эти идеи вызвали бурные дискуссии в обществе и церкви. Уоллес отрицал приложимость отбора к
491

«возникновению человеческих способностей», а Э. Геккель, страстный сторонник Дарвина, назвавший его «Ньютоном органического мира», прилагал идею естественного отбора к развитию общества. Ботаник А. Н. Бекетов в работе «Гармония в природе» (1858) привел обширные материалы об изменении растений в разных условиях и выделил их борьбу за существование. Русский князь, географ и геолог П. А. Кропоткин, известный как теоретик анархизма, много путешествующий по Сибири, наблюдал перемещения больших масс животных, спасающихся от стихийных бедствий. На основе этого он выделил в качестве факторов эволюции взаимопомощь и кооперацию.
Так пришли к представлению о том, что органический мир представляет некое единство, имеет свою историю, а его нынешнее состояние есть результат предшествующего. Заслуга Дарвина в том, что из сопоставления фактов борьбы за существование и всеобщей изменчивости свойств и признаков он вывел неизбежность избирательного уничтожения одних особей и размножения других — естественного отбора. Начинаясь с наблюдения, познание жизни продолжалось на уровне мыслительных процессов. В классической биологии эксперимент еще не был методом познания живого. Механистический детерминизм игнорировал функциональное единство живых систем, а телеологический подход основывался на целесообразности организмов. С теории эволюции Дарвина, в основе которой лежал рациональный подход, началось преодоление идеалистической тенденции в биологии.
Учение Дарвина (наследственность, изменчивость и естественный отбор) за несколько лет вытеснило все антиэволюционные и креацианистские концепции. При этом сопоставляли данные палеонтологии, сравнительной анатомии и эмбриологии (метод Г е к к е л я). Данные палеонтологии доказывали существование эволюции живого. Это показал еще В. О. Ковалевский на примере развития вида лошадей, обнаружив существование предка с пятипалой конечностью, жившего 60 млн лет назад. Последовательные ряды ископаемых животных он выстроил в ряд для наглядности эволюционных изменений. (Такие ряды называют филогенетическими.) До конца XIX в. эволюционные идеи овладевали умами, строились филогенетические древа для всех крупных групп растений и животных. Существуют и эмбриологические доказательства эволюции. Закон Геккеля — Мюллера утверждает, что каждая особь в своем индивидуальном развитии (онтогенезе) повторяет историю развития своего вида (филогенез). К доказательствам относят и наличие рудиментальных органов, и явления атавизма. Существуют и биогеографические доказательства: сравнение животного и растительного мира разных континентов показывает, что различия внутри вида тем больше, чем дольше длилась их изоляция. Биоразнообразие — неизбежный результат отбора.
492

В результате изучения эволюции групп (макроэволюции) сформировался так называемый классический дарвинизм: установлена необратимость эволюции, принцип мультифункциональности органов и эволюции органов путем смены функции, биогенетический закон и др. Но многие ученые не приняли дарвинизм, и это неприятие и критика особенно усилились в период возникновения генетики. Можно даже сказать, что распространение эволюционных идей сопровождалось в это время острой критикой теории естественного отбора. Отсутствие обнаружения переходных форм препятствовало принятию дарвиновских идей, а с появлением генетики естественный отбор все больше подвергался критике. Так, Ф.Дженкин показывал, что при скрещивании произойдет «растворение признаков», которые были единично поддержаны отбором. Основу такой критики составило отсутствие строгих доказательств наследственной изменчивости, которые давала генетика (теория мутаций, учение о чистых линиях и принцип корпускулярной наследственности). В. Л. Иоганнсен показал неэффективность отбора в чистых линиях (в потомстве одной са-моопл од отворяющейся особи). Г.де Фриз в 1889 г. выдвинул мутационную гипотезу о скачкообразном возникновении новых видов путем крупных изменений наследственности (мутации) без ведущего участия естественного отбора.

12.6. Понятие о неодарвинизме и синтетической теории эволюции

Постепенно стал складываться синтез генетики и классического дарвинизма. Уточнялась терминология. После опытов Вейс-мана и появления мутационной гипотезы де Фриза были вскрыты закономерности распределения хромосом при клеточном делении.
Хромосомная теория наследственности, сформулированная А. Вейсманом, выдвинула принцип невозможности передачи по наследству «благоприобретенных» признаков. Отрезанные хвосты у мышей во многих поколениях даже не укорачивались. Приобретенные признаки не влияли на половые клетки, передающие признаки следующим поколениям, роль среды фактически сводилась к сортированию возникающих независимо от нее наследственных изменений. Требовалось уточнение понятия изменчивости. Т. Морган установил, что признаки, гены которых «сцеплены» в одной хромосоме, наследуются совместно. Поэтому и третий закон Менделя выполнялся не всегда. После обнаружения у дрозофилы групп сцепления генов по числу имеющихся хромосом эта теория оформилась (Т. Г. Морган, А. Стертевант и др.). В 1950 г. была найдена тонкая структура гена (С. Бензер), понят язык, на котором была записана генетическая информация. Эти генети-
493

ческие механизмы наследственности существенны и для понимания изменчивости как основы отбора.
Изменчивость — способность живых организмов приобретать новые признаки и свойства, отражающая взаимодействие организма с внешней средой. Различают наследственную (геноти-пическую, или мутационную) изменчивость и ненаследственную (модификационную) изменчивость (вместо неопределенной и определенной изменчивости у Дарвина соответственно). Первая связана с мутациями, возникает из-за изменения структуры гена или хромосом и служит единственным источником генетического разнообразия внутри вида. Причиной мутаций могут быть внешние жесткие излучения, химические причины и прочие мутагены (например, вирусы). Большая часть мутаций рецессивна и не проявляется у гетерозигот. Рекомбинации при половом размножении также порождают множественные мутации, которые приводят к комбинативной изменчивости, создающей материал для естественного отбора. Но новых видов при этом не образуется. При изменении внешних условий некоторые ранее вредные рецессивные мутации могут оказаться полезными, и их носители могут получить преимущество при естественном отборе. Мутации — фактор случайный, подчиняющийся статистическим законам. Поэтому они, как и перестройки генов, и волны численности популяции, не могут быть решающим фактором эволюции.
Модификационная изменчивость — это сходные изменения признаков у всех особей потомства популяции какого-то вида в сходных условиях существования. Она не затрагивает гены и не передается по наследству. Модификационные изменения адаптационны, т. е. делают популяцию лучше приспособленной к изменению условий. Они могут происходить лишь в пределах генотипа и не выходят за пределы нормы данного признака и для эволюции не существенны. Благодаря изучению генетических процессов в популяции эволюционная теория интенсивно развивалась.
Генные мутации — главная причина возникновения новых наследственных свойств. Они и есть основные предпосылки эволюции, постоянно действующий источник наследственной изменчивости. Мутация может быть рецессивной, доминантной и полудоминантной в зависимости от состояния гена, в котором она произошла. Гены мутируют с определенной частотой, и природные популяции насыщены самыми разнообразными мутациями из-за одновременных мутаций многих генов.
Рецессивные мутации могут накапливаться в генофондах популяций, составляя резерв наследственной изменчивости. Классические работы Четверикова связали закономерности отбора в популяциях с динамикой процесса эволюции. На нескольких видах мушек дрозофил он показал, что в каждой популяции есть большое количество разных рецессивных мутантных генов. Эти гены
494

не выявляются в признаках организма, так как подавлены нормальными доминантными аллелями, но могут проявиться в случае, когда встретятся и оставят потомство две особи с одним и тем же рецессивным мутантным геном. Так колебания частоты генов в популяциях связаны с внешними условиями среды.
Этот закон Четверикова был многократно проверен и на других объектах, породив мнение, что наличие таких рецессивных му-тантных генов является предпосылкой эволюции. Но важно, чтобы эти особи не имели дефектов, мешающих нормальной работе организма, и обладали какими-то преимуществами перед другими. Так, при близкородственном скрещивании (инбридинг) потомство оказывается гомозиготным не только по этому мутантному гену, но и по большим отрезкам хромосом, что не способствует эволюции.
Основную роль должны играть доминантные мутации, считает Гершенсон, а рецессивные — могут изредка поддерживаться отбором, хотя у дрозофил численность рецессивных мутант-ных генов велика, но частота каждого мала (порядка сотых долей процента). Такой случайный спектр рецессивных мутаций свидетельствует о ненаправленном характере мутационного процесса в популяции. Доминантные же мутации почти все принадлежат к очень ограниченному числу типов и вызывают лишь несколько определенных небольших изменений в структуре жилок крыльев, числе и расположении щетинок. В популяциях их доля около 15 %, сохраняющаяся из года в год. Отсюда и предположение о действии естественного отбора, обеспечивающего и сохранность типов.
Мутации как бы нащупывают экологические условия, способствующие выживанию и размножению особей с данной мутацией. Одновременно идет отбор генотипов, в которых она наиболее благоприятна. Важно ее влияние и на норму реакции организма. Так, мутантный признак закрепляется в наиболее подходящих местах, где мутанты становятся постоянной частью природной популяции. Затем на стадии сосуществования мутантов с немутантами происходит приспособление популяции к более эффективному использованию среды обитания. При этом эволюционная пластичность популяции высока и позволяет быстро перестроиться при стойких изменениях среды. Появившаяся мутация может повысить адаптивные свойства организма, тогда можно говорить о третьем этапе, о появлении нового экотипа. И если какой-нибудь из этих экотипов окажется в изоляции от других популяций вида, то начнет образовываться новая разновидность, способная стать и новым видом. Эта схема сильно упрощена, не учтено множество факторов, могущих повлиять на процесс, в том числе и недавно открытых, — перемещения гена в пределах генома, умножение числа какого-то гена в геноме и т. п. В контексте геологических времен видообразование — процесс почти мгно-
495

венный, интервал от позднего докембрия до современности, равный примерно 700 млн лет, за который сложилась современная жизнь, безусловно, мал для развития ее без скачков.
Принцип Харди — Вайнберга — без внешних давлений частоты генов в популяции постоянны (1908) — служил первым существенным шагом к объединению дарвинизма и генетики. Этот закон означает, что накопленные изменения в генофонде не исчезают бесследно. Исходя из него и учитывая влияние отбора и возникновение новых мутаций, С.С.Четвериков показал, что из-за постоянных мутаций во всех популяциях создается существенная наследственная гетерогенность, что отбору подвергаются не отдельные особи и виды, а генотип популяции. С работы С. С. Четверикова «О некоторых моментах эволюционного процесса с точки зрения современной генетики» (1926) наступил период синтеза представлений. Мутации — основа эволюции, они перерабатываются естественным отбором. Исследования конца 20-х гг. XX в. показали, что большую роль в эволюции играет не только появление новых мутаций, но и изменение частоты встречаемости существующих аллелей (гена) из-за случайных процессов — колебания численности популяций и пр. (Р.А. Фишер, Н. П.Дубинин, Д.Д. Ромашов, С.Райт и др.). При резком снижении численности популяций (в связи с ростом близкородственных скрещиваний) снижается наследственная изменчивость. По Райту — это «дрейф генов», а по Дубинину — «генетико-автоматический процесс». Другим проявлением «волн жизни» является изменение концентрации различных мутаций и уменьшение разнообразия генотипов популяции. Они могут привести к изменениям направленности и интенсивности действия отбора.
Генетика позволила проследить протекание эволюционного процесса от появления первого признака в популяции до возникновения нового вида. При исследованиях на микроэволюционном (внутривидовом) уровне применялись точные экспериментальные методы. И пришли к элементарной единице эволюции — популяции, элементарном эволюционном материале и явлении. Учение о микроэволюции сформулировали Ф.Г.Добржанский и Н.В.Тимофеев-Ресовский (1939). Современная теория не только добавила к дарвиновской «триаде» новые факторы эволюции, но и основные факторы переосмыслила иначе. Сейчас к ведущим факторам эволюции относят мутации, популяционные волны численности и изоляцию. Возникла и глобальная цель — управление процессом эволюции.
Учение о развитии биогеоценозов и биосферы как новое направление эволюционной биологии стало развиваться с 20-х гг. XX в. благодаря трудам вьщающихся ученых В. И. Вернадского, В. Н. Сукачева и А. Тенсли. Закономерности эволюции экосистем разрабатываются и сейчас (см. гл. 14).
496

Популяция генетически обособлена от других популяций того же вида и обладает общим генофондом, что обеспечивает геноти-пическое сходство входящих в нее особей. Из-за малой продолжительности жизни отдельной особи по сравнению с временами эволюции ее генотип на эволюции не скажется. Возникшие наследственные изменения особи в силу свободного скрещивания могут распространиться в популяции, создавая генетическую неоднородность особей и условия для отбора. Популяция — часть вида, т. е. входящие в нее особи принадлежат к одному виду (генетически замкнутой системы, представители которой не могут скрещиваться и давать плодовитое потомство с представителями других видов). Поэтому возникшая мутация не выйдет за пределы вида, и реальные эволюционные сдвиги можно обнаружить лишь в популяциях. Значит, популяция — элементарная биологическая единица, в которой возникают эволюционные процессы.
Синтетическая теория эволюции появилась в 30 — 40-е гг. XX в., объединив разные учения на основе дарвинизма, данных генетики и экологии. В ней популяцию признают в качестве основной единицы эволюции и выделяют два типа эволюции — на микро- и макроуровнях.
Микроэволюцию составили несколько разделов биологии. Среди них — генетико-экологическое изучение структуры популяции (Н.И.Вавилов, Е.Н.Синская, Дж.Клаузен, М.А.Розанова), экспериментальное и теоретическое изучение борьбы за существование и естественного отбора (В. Н. Сукачев, Дж. В. Холстейн, Г. Ф. Га-узе и др.), данные теоретической и экспериментальной генетики (М.Лернер, И.И.Шмальгаузен, Н.П.Дубинин, Г.Стеббинсидр.), развитие теории вида (Н.И.Вавилов, Э.Майр, К.М.Завадский и др.). Теория микроэволюции изучает необратимые преобразования генетико-экологической структуры популяции, которые могут привести к образованию нового вида.
Макроэволюция сформировалась в работах Н.И.Вавилова, И.И.Шмальгаузена, Дж. Г. Симпсона, А.Н.Северцева и др. Она изучает происхождение надвидовых таксонов (семейств, отрядов, классов и пр.), основные направления и закономерности развития жизни на Земле в целом. Эти процессы недоступны наблюдению и могут быть только реконструированы.
Основные положения синтетической теории эволюции (неодарвинизма) таковы:

  1. Естественный отбор — главный движущий фактор эволюции, является следствием конкурентной борьбы за существование, особенно острой внутри вида и популяции. Факторами образования видов являются мутации, дрейф генов и различные формы изоляции.
  2. Расхождение признаков организмов в ходе эволюции от общего предка (дивергенция) происходит через отбор мелких слу-

497

чайных мутаций. Новые формы образуются через крупные наследственные изменения, жизненность которых определяет отбор.

  1. Исходным материалом эволюции служат мутации, случайные и ненаправленные. Организация популяции и изменения условий среды выделяют наследственные изменения в сторону прогресса.
  2. Макроэволюция, ведущая к образованию надвидовых групп, осуществляется через процессы микроэволюции.

Положение об элементарных явлениях и факторах эволюции сформулировал Н.В.Тимофеев-Ресовский: а) популяция — элементарная эволюционная структура; б) изменение генотипа популяции — элементарное эволюционное явление; в) генофонд популяции — элементарный эволюционный материал; г) элементарные эволюционные факторы — мутации, «волны жизни», изоляция, естественный отбор. Отбор может быть в трех формах.

Эволюционный подход становится методологической основой биологии. Конкретный материал, теории и гипотезы разных ее областей осмысливаются с эволюционных позиций. Эволюционное учение соединяет разрозненные, узко специализированные биологические дисциплины, противодействует их разобщению и поэтому занимает центральное место в современной биологии. Принцип актуализма («современность — ключ к познанию прошлого») здесь сочетается с принципом историзма («ключом к изучению настоящего является познание прошлого»).

12.7. Понятия микро- и макроэволюции. Естественный отбор — направляющий фактор эволюции

Современный эволюционизм подразделяет эволюционный процесс на микро- и макроэволюцию.
Микроэволюция — процесс перестройки внутри вида, ведущий к образованию новых популяций, подвидов и заканчивающийся образованием нового вида. Микроэволюция может происходить в достаточно короткие промежутки времени. В результате мутаций (наследственной изменчивости) происходят случайные изменения генотипа. Мутации чаще всего рецессивны и редко бывают полезными для вида, но все-таки какие-то могут оказаться полезными и тогда особь получает сразу большое преимущество перед остальными особями популяции. Так, жирафы с более длинной шеей получали преимущество питаться листьями с высоких деревьев. Появление нового признака вызывает процесс дивергенции в популяции.
Расхождение признаков (дивергенция) заключается в том, что особи с ярко выраженными вариантами какого-то при-
498

знака будут или преимущественно выживать, или вымирать (не оставлять потомства). Наиболее приспособленная группа будет более интенсивно размножаться и передавать полезный признак по наследству, укрепляя его и увеличиваясь в численности. Особи с неявно выраженным признаком будут постепенно вытесняться более приспособленными. Таким образом возникают новые подвиды и виды. Дивергенция всегда имеет характер группового отбора особей с полезными признаками из-за естественного отбора, т. е. из-за мутаций, лежащих в основе отбора.
Так, более 20 видов лютиков имеют одного предка. Причина расхождения — географическая: болото, луг, лес и т.д. Если в одинаковых условиях существования животные, относящиеся к разным группам, приобретают сходное строение, то говорят о конвергенции, а для генетически близких групп — о параллелизме.
Численность популяции изменяется дивергенцией. Волны численности, существующие в популяции, зависят от изменений климата, количества врагов, количества пищи и т. п. Может даже случиться, что сумеют выжить только те особи, которые приобрели полезный признак.
Так, в засушливый год выжили жирафы с более длинной шеей. Если бы они не были пространственно отделены от других популяций и могли скрещиваться с живущими рядом в соседней долине, где засуха не столь существенна из-за водоема, жирафами с короткой шеей, то новый вид не образовался бы.
Изоляция популяций необходима для образования нового вида, она — важнейший фактор микроэволюции. Изоляция как фактор видообразования может достигаться различным образом:

  1. Географическая изоляция связана с расширением зоны обитания (ареала). В новых условиях постоянно происходят мутации, наследственные изменения, действует естественный отбор, что приводит к новому виду. Преградами могут быть реки, горы, ледники и пр. Образование вида таким образом занимает сотни и тысячи поколений. Дарвин выделял роль среды в видообразовании. Животные, обитающие на островах Зеленого Мыса, несмотря на некоторое сходство с материковыми видами, имели существенные различия.
  2. Временная изоляция достигается несовпадением сроков размножения между двумя подвидами. В результате подвиды расходятся еще больше и возникают два новых вида. Таких примеров много среди рыб.
  3. Репродуктивная изоляция возникает из-за различий в поведении или несовместимости генетического материала.

Макроэволюция — процесс формирования более крупных единиц: из видов — новых родов, из родов — новых семейств и т.д. Эти процессы нельзя изучать непосредственно, поскольку они
499

очень длительны. Но в основе макроэволюции лежат те же движущие силы, что и в микроэволюции: наследственная изменчивость и начало дивергенции; естественный отбор и продолжение дивергенции, гибель менее приспособленных и образование новой структурной единицы; репродуктивное разобщение, что доказывается несколькими независимыми путями:
анатомическими: атавизмы (сохранившиеся у современных существ органы предков — хвост, волосяной покров и т.п.), рудименты (находящиеся на стадии исчезновения уже ненужные органы — аппендикс, остатки третьего века и др.), гомологические органы (пятипалая конечность, в основе которой скелет плавников рыб). Единый план строения животных указывает на единство происхождения;
эмбриологическими, основанными на сходстве зародышей ранних стадий развития, уменьшающимися по мере роста и развития. В конечной стадии начинают преобладать черты, свойственные данному классу, семейству, виду;
палеонтологическими — остатки вымерших переходных форм. Так, обнаружение пятипалого и трехпалого предка у однопалой современной лошади доказывает, что предки лошади имели пять пальцев на конечности.
Движущие силы эволюции видов в природе — наследственная изменчивость и естественный отбор. Наследственная изменчивость дает материал для эволюции, а естественный отбор определяет, насколько полезен возникший из-за мутаций признак. По Дарвину, основа естественного отбора — борьба за существование. Это может быть борьба внутривидовая — за воду и свет, за лучшие участки и доступ к водоему и др.; межвидовая — между хищниками и грызунами на одной территории; борьба с неблагоприятными условиями среды. И все новые признаки, возникающие в результате наследственной изменчивости, проверяются естественным отбором. Доказательством существования отбора он считал тот факт, что каждая пара организмов дает больше потомков, чем их дорастет до взрослого состояния. В борьбе за существование выживают те, которые смогли передать своим потомкам набор признаков, обеспечивающий им лучшую приспособляемость, которая выражается в строении организмов, поведении и т.д. Но она носит относительный характер, помогая выживать только в условиях, в которых сформировалась.
Так, осетр мечет 2 млн икринок, а доживают до взрослых рыб — единицы. Вблизи промышленных предприятий темноокрашенные особи как менее заметные вытеснили светлоокрашенных. Некоторые животные выработали окраску, которая делает их похожими на опасные виды, чтобы защититься от нападения хищников. Особенности формы дельфина позволяет ему развивать скорость до 40 км/ч. Стриж имеет длинные узкие крылья, помогающие ему
500

прекрасно летать, но не позволяющие взлетать с ровных поверхностей и, если ему не с чего спрыгнуть, он погибает.
Под действие отбора могут попасть и отдельные особи, и целые популяции. Он определяет направление эволюции, собирая и интегрируя многочисленные случайные отклонения, сохраняя не признаки, а комплекс признаков или фенотипы, т. е. определенные комбинации генов, свойственных организму. Выделяют несколько форм отбора.
Движущий отбор проявляется при изменении условий существования вида. Его давление направлено в пользу особей, имеющих отклонение определенного признака от нормы. Происходит сдвиг общей нормы и возникает новая. Дивергенция между старой и новой нормами ведет к видообразованию. Движущий отбор лежит в основе появления популяций насекомых, устойчивых к определенному яду. Эти особи приобретают преимущества при размножении, и их потомки занимают места умерших насекомых, которые не обладали этим признаком. Таким путем исчезли и многие органы, не используемые несколькими сотнями поколений.
Стабилизирующий отбор действует в почти неизменных условиях существования. Он оказывает давление в пользу особей, имеющих средние значения какого-то признака. В результате происходит их укрепление, предохранение от разрушающего действия мутаций. И в местностях, где условия жизни не менялись, сохранились древние виды, вымершие в других местах. Например, сохранился реликтовый таракан, голосеменное растение гинкго, кистеперая рыба латимерия.
Разрывающий отбор действует при изменении условий существования, его давление направлено в пользу организмов, имеющих отклонения от нормы в обе стороны. И формируется новая норма реакции. Так, на островах, где сильны ветры, мухи с нормальными крыльями сдуваются и гибнут. Преимущество у мух или с недоразвитыми крыльями (они ползают), или с длинными крыльями (они хорошо летают и оказывают сопротивление ветру).
Биологический прогресс — результат успеха в борьбе за существование. Он характеризуется возрастанием численности особей, расширением ареала обитания, увеличением числа групп более низкого ранга. Биологический регресс характеризуется обратными признаками и ведет к вымиранию. К биологическому прогрессу ведут следующие факторы:
морфологический прогресс — усложнение организма, поднятие его на более высокий уровень. Строение организма изменяется не вследствие приспособления к изменяющимся условиям среды, оно позволяет расширить использование условий внешней среды. При дальнейшей эволюции эти изменения, называемые арогене-зом, сохраняются и ведут к возникновению новых групп, видов;
501

аллогенез — эволюционное направление, сопровождающееся идиоадаптацией — приспособлением к специальным условиям среды, полезным в борьбе за существование, но не меняющим уровня организации. Пример — колючки растений или изменение окраски животных;
катагенез — эволюционное направление, сопровождающееся упрощением организации. Фактически — это морфологический регресс. Пример — переход к паразитическому образу жизни, уменьшающий способности к конкурентной борьбе.
После возникновения морфологического прогресса начинается приспособление отдельных популяций к условиям существования путем идиоадаптации. Например, класс птиц при расселении по суше дал огромное разнообразие форм. Хотя основы их строения одинаковы, частные приспособления отличны. Поэтому чередование этих главных направлений отражает эволюционную тенденцию в филогенезе почти всех групп.
Биологическая эволюция отлична от эволюции атомов, Земли, общества и др. В ее основе — «уникальные процессы самовоспроизведения макромолекул и живых организмов, которые таят в себе почти неограниченные возможности преобразования живых систем в ряду поколений», — отмечает известный эволюционист А. В.Яблоков. Биологическая эволюция — необратимое и в известной степени направленное историческое развитие живой природы, сопровождающееся изменением генетического состава популяций, формированием адаптаций, образованием и вымиранием видов, преобразованиями биогеоценозов и биосферы в целом, отмечает он. С возникновения жизни органическая природа непрерывно развивается сотни миллионов лет, и результатом процесса эволюции является то разнообразие форм живой материи, которая еще не полностью описана, классифицирована и изучена. Формы живой материи — и предмет, и объект эволюции. Результаты биологической эволюции многообразны, это всегда соответствие развивающейся живой системы условиям ее существования.

12.8. Основные гипотезы происхождения живого

Проблема эволюции и происхождения живого на Земле является загадкой и предметом споров не одно столетие. Одно представление ориентировалось на идеи творения мира, приписывая всему живому особую жизненную силу, не зависящую от материального мира (витализм), другое — на органическую связь живого с неживым, и появилась идея о возможности самозарождения жизни.
Анаксимандр считал, что и живое, и неживое образовано из айперо-на по одинаковым законам. Животные родились из воды и земли при
502

нагревании солнечной теплотой и светом, при этом все они возникли независимо друг от друга. Эмпедокл исходил из построения материи четырьмя элементами мира (огонь, воздух, земля, вода), которые взаимодействуют через любовь (притяжение) и вражду (отталкивание). Теплота недр Земли вырывалась из глубин и превращала тинообразную поверхность Земли в комья разной формы. Так появились растения, а потом животные. Но они не были похожи на современные, неприспособленные и уродливые формы исчезали, оставляя более совершенные для развития. Элементы стремились соединиться с себе подобными, поэтому важны для живого тепло и кровь. Без воды и огня наступает смерть. Атомистическая концепция Демокрита, представленная в поэме Лукреция Кара, отвергала легенду о сотворении людей богами. В поэме предложена периодизация истории человечества на основе использования материала для орудий труда: века каменный, медный (или бронзовый) и железный. Распад Римской империи в V в. привел к новому типу сознания, к религиозному мироощущению, когда естествознание лишилось своего предмета, своих реальных задач. Вера во всемогущего Бога, создающего и творящего Мир, вела к периоду мистицизма и иррационализма. Кроме того, отсутствие надежных средств хранения и передачи информации способствовали упадку науки.
До XVIII в. не было речи о различии и единстве живого и косного вещества. Человек — боговдохновенное создание, а остальная природа — материя, управляемая законами механики, и развитие биологии и геологии шло раздельно. Теория эпигенеза (У. Гарвей, Р.Декарт) отрицала предопределенность развития организма, развивающегося под определяющим влиянием окружающей среды. У. Гарвей, как и Аристотель, считал эволюцию стремлением к совершенству. Обращаясь больше к опытному изучению эмбриогенеза, эпигенетики отходили от идей божественного творения жизни. Преформисты (А.Левенгук, Г.Лейбниц, Н.Мальбранш и др.) считали, что в зародышевой клетке содержатся все структуры взрослого организма, и онтогенез — лишь количественный рост зачатков органов и тканей. Лейбниц провозгласил принцип градации, предсказал существование переходных форм между животными и растениями. Этот принцип затем был развит до представления о «лестнице существ» и концепции трансформизма.
Проблема происхождения и эволюции жизни относится к наиболее интересным и в то же время наименее исследованным вопросам, связанным с философией и религией. Практически на протяжении почти всей истории развития научной мысли считалось, что жизнь — явление самозарождающееся. Здесь было много чисто умозрительных рассуждений, теологических и научных. Перечислим основные теории, связанные с моделью развития Вселенной (рис. 12.10):
жизнь была создана Творцом в определенное время — креационизм (от лат. creatio— сотворение);
жизнь возникла самопроизвольно из неживого вещества;
503 жизнь существовала всегда;
жизнь была занесена на Землю из Космоса;
жизнь возникла в результате биохимической эволюции.
Согласно теории креационизма, возникновение жизни относится к определенному событию в прошлом, которое можно вычислить. В 1650 г. архиепископ Ашер из Ирландии вычислил, что Бог сотворил мир в октябре 4004 г. до н. э., а в 9 часов утра 23 октября — и человека. Это число он получил из анализа возрастов и родственных связей всех упоминаемых в Библии лиц. Однако к тому времени на Ближнем Востоке уже была развитая цивилизация, что доказано археологическими изысканиями. Впрочем, вопрос сотворения мира и человека не закрыт, поскольку толковать тексты Библии можно по-разному. Сторонники этой гипотезы считали, что живым организмам присуща особая сила, независимая от материального мира, направляющая все жизненные процессы (витализм). В настоящее время около 50 % жителей США придерживаются этой гипотезы.
Теория спонтанного зарождения жизни существовала в Вавилоне, Египте и Китае как альтернатива креационизму. Она восходит к Эмпедоклу и Аристотелю: определенные «частицы» вещества содержат некое «активное начало», которое при определенных условиях может создать живой организм. Аристотель считал, что активное начало есть в оплодотворенном яйце, солнечном свете, гниющем мясе. У Демокрита начало жизни было в иле, у Фалеса — в воде, у Анаксагора — в воздухе. Аристотель не сомневался в самозарождении лягушек, мышей и других мелких животных. Платон говорил о самозарождении живых существ из земли в процессе гниения. Различные случаи самозарождения описаны Цицероном, Плутархом, Сенекой и Апулеем.
504

С распространением христианства идеи самозарождения были объявлены еретическими, и долгое время о них не вспоминали. Но Гельмонт придумал рецепт получения мышей из пшеницы и грязного белья. Бэкон считал, что гниение — зачаток нового рождения. Гарвей, как и Бэкон, думал, что черви и насекомые могут зарождаться при гниении. Парацельс пытался разработать рецепты создания искусственного человека — гомункулуса путем помещения человеческой спермы в тыкву. В XV—XVI вв. считали, что львы возникли из камней пустыни. Согласно Декарту, самозарождение — естественный процесс, который происходит при некоторых условиях. Идеи самозарождения жизни поддерживали Коперник, Галилей, Декарт, Гарвей, Гегель, Ламарк, Гете, Шеллинг. Их авторитет о многом определил широкое распространение этой идеи.
Итальянский биолог Ф. Реди серией опытов с открытыми и закрытыми сосудами доказал (1688), что появляющиеся в гниющем мясе белые маленькие черви — это личинки мух, и сформулировал принцип: все живое — из живого. Так он отверг доктрину самозарождения жизни. Но только острые дискуссии в середине XIX в. потребовали экспериментальных исследований. Л. Па-стер окончательно показал (1860), что бактерии могут появляться в органических растворах только тогда, если они были туда занесены ранее. Опыты Пастера подтвердили принцип Реди и показали несостоятельность идеи самозарождения жизни. Но они не могли ответить на основной вопрос о происхождении жизни. И для избавления от микроорганизмов необходима стерилизация, получившая название пастеризации. Отсюда укрепилось представление, что новый организм может быть только от живого.
Сторонники теории вечного существования жизни считают, что на вечно существующей Земле некоторые виды вынуждены были вымереть или резко изменить численность в тех или иных местах из-за изменения внешних условий. Четкой концепции на этом пути не выработано, поскольку в палеонтологической летописи Земли есть некоторые разрывы и неясности. С идеей вечного существования жизни во Вселенной связана и следующая группа гипотез.
Теория панспермии не предлагает механизма для объяснения первичного возникновения жизни и переносит проблему в другое место Вселенной. Наша планета, возникшая 4,5 млрд лет назад, в первые 500 млн лет бомбардировалась потоками метеоритов, которые вроде бы препятствовали не только появлению жизни, но даже и образованию свободной водной поверхности. Но в пластах, имеющих возраст 4,3 млрд лет, найдены простейшие формы жизни, а 200 млн лет — слишком малый срок не только для самопроизвольного образования органики, не говоря о живых клетках. Во всей Вселенной за 13 —15 млрд лет существования такой процесс мог бы осуществиться. В 1865 г. немецкий врач Г. Рихтер выдвинул идею космических зачатков — космозоев, переноси-
505

мых с одной планеты на другую. Зародившись в космосе, жизнь долго сохранялась в анабиозе почти при Т = О К и была занесена на Землю метеоритами. Либих считал, что «атмосферы небесных тел, а также вращающихся космических туманностей можно считать как вековечные хранилища оживленной формы, как вечные плантации органических зародышей», откуда жизнь рассеивается во Вселенной. Аналогично мыслили Кельвин, Гельмгольц и др.
В начале XX в. с идеей радиопанспермии выступил Аррениус. Он описывал, как с населенных планет уходят в мировое пространство частички вещества, пылинки и живые споры микроорганизмов. Они, сохраняя жизнеспособность, летают во Вселенной за счет светового давления и, попадая на планету с подходящими условиями, начинают новую жизнь. Эту гипотезу поддерживали многие, в том числе русские ученые С. П. Костычев, Л.С.Берг, В.И.Вернадский и П.П.Лазарев.
Для обоснования панспермии обычно используют наскальные рисунки с изображением предметов, похожих на ракеты или космонавтов, или появления НЛО. Полеты космических аппаратов разрушили веру в существование разумной жизни на планетах Солнечной системы, появившуюся после открытия Скиапарелли каналов на Марсе (1877). В 1924 г. многие каналы сфотографировали, и они казались доказательством существования разумной жизни. Фотоснимки 500 каналов зафиксировали сезонные изменения цвета, которые подтвердили идеи астронома Г.А.Тихова о растительности на Марсе, так как озера и каналы имели зеленый цвет. Ценная информация о физических условиях на Марсе была получена советским космическим аппаратом «Марс» и американскими посадочными станциями «Викинг-1» и «Викинг-2». Так, полярные шапки, испытывающие сезонные изменения, оказались состоящими из водяного пара с примесью минеральной пыли и из твердой двуокиси углерода (сухого льда). Но пока следов жизни на Марсе не найдено. Изучение поверхности с борта искусственных спутников позволило предположить, что каналы и реки Марса могли возникнуть в результате растапливания подповерхностного водяного льда в зонах повышенной активности или внутренней теплоты планеты или при периодических изменениях климата.
В конце 60-х гг. вновь возрос интерес к гипотезам панспермии. Так, геолог Б.И.Чувашов («Вопросы философии», 1966) писал, что жизнь во Вселенной, по его мнению, существует вечно. Он критиковал теорию Опарина, считал сомнительным применение понятия естественного отбора к анализу развития предбиологических систем, хотя и допускал возможность чрезвычайно редкого развития неживой материи до уровня живой. Потому оно может произойти только однажды в каждой данной галактике и переноситься спорами с метеоритами по планетным системам звезд.
При изучении вещества метеоритов и комет были обнаружены многие «предшественники живого» — органические соединения, синильная кислота, вода, формальдегид, цианогены. Формальдегид, в частности, обнаружен в 60 % случаев в 22 исследованных
506

областях, его облака с концентрацией около 103 мол/см3 заполняют обширные пространства. Предшественники аминокислот найдены в лунном грунте и метеоритах (1975). Сторонники этой гипотезы считают их посеянными на Земле. В предисловии к русскому изданию книги С. Фокса и К.Дозе «Молекулярная эволюция и возникновение жизни» А. С. Опарин писал: «Земля уже при самом своем образовании получила эти вещества, так сказать, «в наследство от Космоса». О существовании жизни вне Солнечной системы пока сказать нельзя, но обнаружены в спектрах далекой галактики линии, соответствующие линии спирта.
В представлениях о зарождении жизни в результате биохимической эволюции важную роль играет эволюция самой планеты. Земля существует почти 4,5 млрд лет, а органическая жизнь — около 3,5 млрд лет. В докембрийских породах найдены признаки живого. Состояние Земли за время ее существования все время изменялось. Очень давно Земля была горячей планетой с температурой (5...8) • 103 К. По мере остывания тугоплавкие металлы и углерод конденсировались, образуя земную кору. Но она не была ровной из-за активной вулканической деятельности и всевозможных подвижек формирующегося грунта. Атмосфера первичной Земли сильно отличалась от современной. Легкие газы — водород, гелий, азот, кислород, аргон и другие — не удерживались еще недостаточно плотной планетой, а более тяжелые соединения оставались (вода, аммиак, двуокись углерода, метан). Вода оставалась газом, пока температура не упала ниже 100 0С.
Химический состав Земли сформировался в результате космической эволюции вещества, возникновения определенных пропорций соотношений атомов. Космическое обилие кислорода и водорода выразилось в обилии воды и ее многочисленных окислов, а высокая распространенность углерода — одна из причин, определивших большую вероятность возникновения жизни. Обилие кремния, магния и железа способствовало образованию в земной коре и метеоритах силикатов.
Источниками сведений о распространенности элементов служат данные о составе Солнца, метеоритов, поверхностей Луны и планет. Возраст метеоритов примерно соответствует возрасту земных пород, поэтому их состав помогает восстановить химический состав Земли в прошлом и выделить изменения, вызванные появлением жизни на Земле. Первый этап — период образования простых органических соединений. На других планетах и в космической газопылевой туманности обнаружены соединения углерода и даже углеводороды. Второй этап — образование в водах океана белковых веществ. В разных странах удалось получить из смеси аммиака, метана, водорода и водяного пара при высоких давлениях и наличии электрических разрядов и ультрафиолетового облучения аминокислоты. Позже путем полимеризации в этих условиях были получены и более сложные органические соединения. Третий этап — процессы ста-
507

ли происходить в кислородной атмосфере, так как кислород накапливался в течение 1,2 млрд лет, и соединения начали окисляться. Так родился «первичный бульон» жизни. Можно сказать, что Опарин обратился к простым формам неживой материи, распространив на их изучение дарвиновский принцип эволюции.
Научная постановка проблемы возникновения жизни принадлежит Ф. Энгельсу, считавшему, что жизнь сформировалась в ходе эволюции материи. В этом же ключе высказался и К. А. Тимирязев: «Мы вынуждены допустить, что живая материя осуществлялась так же, как и все остальные процессы, путем эволюции... Процесс этот, вероятно, имел место и при переходе из неорганического мира в органический» (1912). Но окончательного ответа пока нет.

12.9. Концепция происхождения живого по гипотезе Опарина—Холдейна

Атмосфера ранней Земли была, скорее, «восстановительной», так как в древних породах преобладают металлы: в восстановленной форме (например, двухвалентное железо), а в более молодых — в окисленной (железо трехвалентное). Опыты, проведенные в лаборатории, показывают, что органические вещества в восстановительной среде создаются легче, чем в окисленной. На первой стадии из простых неорганических соединений появились углеводороды. Возможность образования сложных соединений из простых доказана многими исследованиями.
Так, еще в 1861 г. А. М. Бутлеров обнаружил, что в растворе формалина в известковой воде при стоянии в теплом месте образуются сахара. А. Н. Бах показал, что в водном растворе формалина и цианистого калия возникают еще более сложные вещества, которые могут служить питательной средой для микроорганизмов.
Органика (возможно, углеводороды) возникла в океане из более простых соединений — предположил А. И. Опарин (1923). Необходимую энергию давало Солнце, ультрафиолетовая часть его излучения не поглощалась озоновым слоем (который еще не образовался). Разнообразие простых соединений в океанах, большая водная площадь, обилие солнечной энергии, действовавшей длительное время, образовали «первичный бульон», в котором стали возникать органические соединения. Похожая идея была положена в основу концепции и английского естествоиспытателя Дж. Холдейна (1929).
По оценке К. X. Уоддингтона, «в конце 20 — 30-х гг. были заложены основы точки зрения, согласно которой жизнь рассматривается как явление, естественным образом возникающее из неживой природы. Веро-
508

ятно, что будущие исследователи истории идей отметят, что эта точка зрения на проблему происхождения жизни, представляющая революцию в философском понимании человеком своего собственного места в мире, впервые была разработана коммунистами. Опарин в Москве (1924) и Холдейн в Кембридже (1929) независимо друг от друга утверждали, что последние достижения геохимии... позволяют представить процесс происхождения систем, которые могут быть названы «живыми».
Опарин отметил, что организмы состоят из соединений, обладающих более сложной структурой, чем те продукты, которые они производят. И логично, что некоторые органические соединения предшествовали живым организмам и сыграли важную роль в их происхождении. В 1956 г. Опарин выпустил книгу в соавторстве с астрономом Фесенковым, в которой они придерживаются идеи Шмидта о том, что Солнце захватило часть пылевого облака во Вселенной. Но общей идеей для всех вариантов теории оставалось необходимое условие возникновения жизни — ее первоначальное отсутствие, причем и законы природы изменялись — с возникновением жизни появились законы биологические, а с появлением человека возникли законы социальные.
Момент перехода от неживого к живому — решающий для мировоззрения. У Опарина жизнь возникает на уровне многомерных структур — коагулянты, гели и коацерваты — в «момент выпадения геля или образования первородного студня», и «с некоторыми оговорками мы даже можем считать этот впервые возникший на Земле кусочек органической слизи первичным организмом. В самом деле, он должен был обладать многими из тех свойств, которые в настоящее время рассматриваются как признаки жизни». Он описал (1936) коллоидную фазу возникновения жизни и развитие способности к фотосинтезу у предков растительных организмов. Коацерваты уже могут увеличиваться в размерах, делиться на части и подвергаться химическим изменениям ввиду явлений на границе возможного расслоения. Эти граничные явления имеют зачатки метаболизма, а переход к живому происходит тогда, когда на смену «соревнованию в скорости роста приходит борьба за существование». Возникновение и обострение этой борьбы — результат нехватки для «питания» коа-церватов запасов «предбиологической» органики. Эта нехватка приводит к существованию различных путей получения пищи, организмы до перехода к биологическому уровню развития разделяются на автотрофные и гетеротрофные. При иссякании запасов органического материала вне коацерватов вступали в действие «естественный отбор» и другие биологические факторы, происходил переход к организмам. Хотя Холдейн в 1929 г. считал, что земная атмосфера была богата двуокисью углерода «до возникновения жизни» и первые живые существа были «возможно, огромными молекулами», не упоминая ни о гелях, ни о коацерватах, его имя

стоит рядом с именем Опарина в «гипотезе Холдейна —Опарина».
Подобные условия, существовавшие на Земле 3 — 4 млрд лет назад, в 1953 г. создали в лаборатории американского биохимика Г. Юри — искровой разряд пропускали через смесь метана, аммиака, водорода и воды. В установке Миллера (рис. 12.11) удалось синтезировать ряд аминокислот, глутаминовую кислоту, аденин, глицин и простые сахара. После этого Орджел синтезировал простые нуклеиновые кислоты. Другие ученые стали использовать нагревание, пропускание (3-лу-чей и ультрафиолета, и оказалось, что различные источники свободной энергии приводили к образованию сходных веществ. Попадание полученных веществ в воду предохраняло от обратного распада на простые соединения, а взаимодействие друг с другом открывало возможность эволюции. Наиболее эффективным источником оказалось солнечное излучение в диапазоне (2...2,5) 107м.
В настоящее время излучение с длиной волны менее 2,9 • 107 м поглощается слоем озона и не доходит до земной поверхности. По оценкам Юри, в предбиологические времена доля свободного кислорода составляла около 10-3 от современного значения в атмосфере, что было недостаточно для образования озонового слоя. По расчетам геолога и палеонтолога Б.С.Соколова (1976), содержание кислорода только 1 млрд лет назад достигло 1 % современного значения. Опыты Миллера говорят в пользу теории Юри о составе первоначального «бульона». Ранняя атмосфера Земли напоминала атмосферу современного Юпитера, в ней преобладали неокисленные газы — метан, аммиак и водород. X. Оро в 60-е гг. показал, что молекулы синильной кислоты HCN в одностадийной реакции могут конденсироваться с образованием аденина. Простейшие молекулы возникали в очень малых количествах, и нуклеотидов таким путем не смогли получить. Американский ученый К. Саган подсчитал (1966), что образовавшиеся за счет энергии ультрафиолетовых лучей органические вещества способны создать в водах океана 1 %-ный раствор.
Итак, солнечное излучение способно обеспечить ход мощных процессов синтеза, неорганического фотосинтеза, чтобы начали
510

вдруг «выживать» более сложные молекулы вместо простых. Если химическая эволюция Земли заняла 4,5 млрд лет, то этап биохимической эволюции, который привел к формированию простейших организмов, — более 2 млрд лет. Теория Опарина получила признание, но оставалось неясным, как из простейших веществ вдруг образовалась молекула, способная размножаться. Так считал и известный американский генетик Г. Миллер: жизнь возникла в форме гена — элементарной единицы наследственности — путем случайного сочетания атомных групп и молекул, встречавшихся в водах первичного океана.
В 1966 г. немецкий биохимик Г. Шрамм подсчитал вероятность случайного сочетания 6000 нуклеотидов, образующих РНК вируса табачной мозаики, и получил число 1/102000. Так как считается, что число нуклонов во Вселенной равно 1080, то за 109 лет, отведенных для синтеза простейшего организма, невозможно получить хотя бы одну такую молекулу. Поэтому гипотеза случайного соединения не пользуется признанием. Хойл высказался столь красочно, что его слова вошли в фольклор: эта идея «столь же нелепа и неправдоподобна, как утверждение, что ураган, пронесшийся над мусорной свалкой, может привести к сборке «Боинга-747».
А. И. Опарин разрабатывал свою гипотезу происхождения жизни — возникновение живого в результате взаимодействия простейших органических соединений при постепенном усложнении. Этим процессам благоприятствовали высокое содержание простых органических соединений в поверхностных водах еще молодой Земли, наличие разнообразных условий, постоянный приток энергии от Солнца, в том числе и жесткого ультрафиолета. Возник круговорот веществ, и из взаимных превращений абиотических веществ образовались процессы синтеза и распада органики, стали сохраняться более устойчивые соединения и распадаться малоустойчивые. Если бы шли только процессы синтеза, то структуры усложнялись, но никакого обмена веществ не произошло, т. е. получилась бы не жизнь, а кристаллизация. Если жизнь начала развиваться как единство процессов синтеза и деструкции органического вещества, то вряд ли на первых этапах она была связана с простейшими организмами, подчеркивал Бернал (1969). Стало быть, жизнь появилась раньше живых организмов.
Возникновение молекулярной биологии привело к союзу биохимии и генетики, кульминацией которого явилось появление гипотезы Уотсона—Крика (1953), объяснявшей, каким образом может быть записана генетическая информация в молекулах ДНК. Самое важное — все организмы обладают одним и тем же генетическим кодом.
Простейшие системы — вирусы — состоят из нуклеиновых кислот (ДНК или РНК), заключенных в белковую оболочку. Так не является ли молекула ДНК первой живой формой? «План по-
511

строения» молекулы ДНК не может быть признан случайным, а огромное количество информации не возникает внезапно.
Что касается вирусов, то некоторые считали их живыми (В.Стенли, 1957), другие (в том числе и Опарин) живыми их не признавали, считая, что они не находятся на магистральном пути развития жизни. Опарин говорил (1957): «Первично абиогенным путем могли возникнуть не те в функциональном отношении в высшей степени совершенно построенные нуклеиновые кислоты или белки, которые мы сейчас выделяем из организмов, а только довольно беспорядочно построенные полинуклео-тиды и полипептиды, из которых образовались многомолекулярные исходные системы, и только на основе эволюции этих систем возникли совершенные формы строения молекул, а не наоборот». Книга Опарина, вышедшая в 1936 г. и переведенная в 1938 г., принесла ему мировую известность, а третье издание (1958), выросшее до 500 страниц, вышло одновременно на двух языках. Но за это время он несколько раз колебался в вопросах, связанных с возможностью самозарождения жизни. Поэтому он многократно обращался к проблеме вирусов, обсуждая целесообразность строения организмов, истоки которой — в фундаментальном различии человека и машины: целесообразность строения машине привнесена человеком, создавшим ее. И эти рассуждения Опарина, все более усилиющие-ся, можно отнести к проявлению витализма (особенно в конце 60-х гг.).
В книге «Жизнь, ее природа, происхождение и развитие» (1960) Опарин отмечает, что внутренняя организация паразитов упрощается по мере роста «зависимости от своих хозяев» и адаптации к этой экологической нише. И хотя закодированные нуклеиновые кислоты вирусов — продукт эволюции более высокоорганизованных организмов, сами вирусы — конечный результат паразитического вырождения, утратившие все, кроме генетического материала. Они способны к самовоспроизведению при использовании метаболизма более высокоорганизованных организмов, и они не смогли бы появиться, если бы до них не было эволюции организмов, обладающих способностью к обмену веществ.

12.10. Современная оценка концепции биохимической эволюции в биологии

Концепция Вернадского появилась в 1931 г. Он писал о геохимических функциях биосферы: «...среди миллионов видов нет ни одного, который бы мог исполнить один все геохимические функции жизни, существующие в биосфере изначально. Следовательно, изначальный морфологический состав живой природы в биосфере должен быть сложным. И первое появление жизни при создании биосферы должно было произойти не в виде появления одного какого-то организма, а в виде их совокупности, отвечающей геохимическим требованиям жизни». Вернадский
512

связывал возникновение жизни с гигантской катастрофой, которая прервала безжизненную эволюцию земной коры и внесла в нее столько противоречий, что они смогли породить жизнь. Он считал, что наука способна определить условия, при которых зарождение жизни окажется единственно возможным. Когда-то в прошлом при наличии физико-химических условий, не учитывающихся в настоящее время, был нарушен принцип Реди—Пастера («все живое — из живого»), который только указывает, что самопроизвольного возникновения жизни нет сейчас и не было в то время, когда жизнь уже существовала, раз возникнув. В биосфере, по Вернадскому, есть «косное» вещество (минералы), которое остается постоянным, и живое, меняющееся в процессе эволюции.
Оптические свойства живого и неживого веществ различны, и живое всегда оптически активно, т.е. что молекулы живого обладают общей асимметрией и способны поворачивать плоскость поляризации проходящего через них света. То же относится и к аминокислотам, образующим живые организмы. Молекулы «косного» вещества, имеющие разные виды симметрии не обладают этим свойством. Оптическая активность позволяет отличать вещество биогенного происхождения от вещества «косного». Поскольку веществ, поворачивающих плоскость поляризации, вне Земли пока не обнаружено, естественно считать, что земная жизнь имеет земное происхождение. Появление оптической активности под влиянием приложенного магнитного поля ранее было установлено Фарадеем.
Некоторые предположения Вернадского подтверждены последующим развитием науки. Во-первых, был открыт генетический код, единый для всего живого. Этот четырехбуквенный алфавит выглядит как следствие процесса естественного отбора, отразившего «наиболее приспособленную к земным условиям форму передачи наследственной памяти, наследственной информации, которая кодируется нуклеиновыми кислотами», как выразился академик Н. Моисеев. Это единство генетического кода трудно объяснить, отрицая, что жизнь является продуктом эволюции Земли. Вернадский не мог утверждать это уверенно, поэтому использовал это положение, как не противоречащее опытным данным. Во-вторых, недавно были обнаружены следы жизни на Земле, которые просуществовали 3,6 млрд лет в глубокой пещере на дне океана. Это значит, что почти одновременно (по космическим масштабам времени) с возникновением нашей планеты на ней появилась жизнь.
Концепция «генобиоза» (информационная) появилась в 50-е гг. в связи с работами Холдейна. Он считал, что первичная среда — макромолекулярная система (типа гена), способная к саморепродукции, он назвал ее «голым геном». Пастер тоже рассматривал зарождение живого как возникновение дисимметрич-ной молекулы из симметричной неживой. Американский ученый
513

Г. Блюм (1951) обратил внимание на то, что на ранних этапах эволюции жизни и фотосинтез должен отличаться от современного. Г. Гаффон делил эволюцию энергетики организмов на пять этапов, связанных с последовательной эволюцией внешних условий, в частности, изменением состава солнечного излучения, достигающего земной поверхности (1962). Примитивный фотосинтез использовал ультрафиолетовое излучение, а по мере образования озонового слоя живое постепенно приспосабливалось к фотонам меньшей энергии, но в большем количестве.
Концепция голобиоза, признающая первичность белков, не потеряла своего значения. Полипептиды обладают каталитическими свойствами (С.Кауфман, 1993).
Теория Опарина (1957 — 1960) включает разработку эволюции процессов обмена веществ. Он считал, что механизм запасания солнечной энергии с помощью хлорофилла достаточно сложен и не мог возникнуть быстро, как и процесс окисления некоторых неорганических соединений (серы или железа), используемых микроорганизмами для биосинтеза. Как сторонник первичного обмена веществ, протекающего в коацерватной системе, он считал появление в ней нуклеиновых кислот завершением эволюции в итоге конкуренции протобионтов. Из-за амфотерности молекул белка образовывались коллоидные гидрофильные комплексы, создавая оболочку типа эмульсии. При слиянии таких комплексов друг с другом образуются коацерваты (от лат. coacervatus — накопленный, собранный), отделяющие коллоиды от остальной водной среды. Различные коацерваты являлись сырьем для биохимического естественного отбора. В них происходили дальнейшие химические реакции, при поглощении ими ионов металлов образовывались ферменты. Вдоль границ выстраивались сложные углеводороды типа мембран клетки, обеспечивающие стабильность.
Судьба коацерватной капли определялась тем, какой процесс в ней оказывался преобладающим — роста или распада. Поскольку состав среды, в которой образовывались капли, мало отличался от них, сохранение устойчивости не испытывало затруднений. Отличающееся от среды распадалось, а остальное сохранялось и росло. Так происходил отбор капель, наиболее устойчивых в данных условиях. За миллионы лет бесчисленное их число растворилось в Мировом океане, сохранилась лишь малая часть. Достигнув определенных размеров, одна капля могла распасться на дочерние, и те из них, которые соответствовали по структуре материнской, росли дальше, а резко отличные — распадались. В процессе длительного отбора сохранялись только капли, не теряющие своей структуры, т.е. приобретшие свойство самовоспроизведения. При попадании в коацерват способной к воспроизведению молекулы и внутренней перестройке липидной оболочки могла образоваться и простейшая клетка. Процесс мог развиваться и привести к образованию простейшего организма, питающегося органическими веществами из первичного бульона. Появление самовоспроизведения закрыло этап предыстории развития жизни. Коацерватная капля стала живым организмом, открылась возможность прогрессивной эволюции.
514

Многие ученые признают верной эту гипотезу происхождения жизни и ищут детальное подтверждение ей. Как результат существования единого генетического кода оказалась возможной передача наследственных признаков у бактерий не непосредственно от клетки к клетке, а через бактериофагов. Такие данные получил советский биохимик С. М. Гершенсон (1965). Эта идея стала использоваться в генотерапии — исправление наследственных дефектов ДНК при переносе с помощью вирусов нормальной ДНК в дефектные клетки.
Понятие конкуренции гиперциклов, или циклов химических реакций, которые приводят к образованию белковых молекул, распространил на процессы, которые должны были происходить при эволюционном скачке, кроме принципа дарвиновского отбора, и ввел Эйген в своей знаменитой работе «Самоорганизация материи в ходе химической эволюции» (1971).
Полимеризация молекул на пути к живой клетке не могла идти путем перебора вариантов, для чего требуется время, большее времени существования Вселенной. Молекулы быстро и экономично складываются в полимерную цепочку по четкому правилу, коду. Те циклы, которые работают быстрее и эффективнее, чем остальные, и «побеждают» в конкурентной борьбе. Пищей служат молекулы мономеров, которые хотят поглотить, присоединить к себе макромолекулы полимеров, или, точнее, циклы реакций. В первичном бульоне присутствуют и катализаторы химических реакций, которые сами образуются в них как промежуточные продукты, тем самым протекающие реакции похожи на реакции типа Белоусова—Жаботинского, т.е. являются автокаталитическими. Эйгену еще не было известно, что через несколько лет такие самоорганизующиеся системы начнут изучать в разных областях науки, выделят принципы самоорганизации и появится новая область знания — синергетика. Так появились гипотеза о механизме зарождения макромолекул, необходимых для строительства белка в процессе эволюции, и новая модель предбиологической эволюции.
С критикой позиции Эйгена выступил (1979) Опарин, считая появление жизни не случайным, а закономерным процессом. Его поддержал преподаватель Пермского университета В. В. Орлов, утверждавший, что философия должна «объяснять» процессы происхождения жизни и сознания. Он верил в целенаправленность эволюции материи, кульминацией которой является происхождение человека. Этот телеологический способ мышления сближал Опарина и Орлова с философией природы Тейяра де Шарде-на. С их взглядами не согласился Дубинин: «Жизнь — это не фатальное последствие химической эволюции. Жизнь на Земле могла и не возникнуть...»
В 70 — 80-е гг. приобрела популярность концепция генобиоза. Начало живого — неравновесные диссипативные (рассе-
515

янные) структуры или открытые микросистемы с мощным ферментативным аппаратом, являющимся катализатором. Этот биоид подвержен эволюции из-за переходов (мутаций) между видами к более устойчивой структуре. Такими могут быть кристаллы глины, считал А.Дж.Кернс-Смит. Возникновение асимметрии в живой материи Дж. Трэнтер связывал с многократным усилением исче-зающе малых асимметрий слабого взаимодействия в кристаллических структурах глин. Холдейн обратился к идее первичности макромолекулярной системы с функциями генетического хода. Эту его последнюю концепцию называют «необиозом».
Сначала нуклеотидная система была голой, т.е. находилась в комплексе с протеинами и обеспечивала свою саморепродукцию. Но в абиотических условиях сразу «зародился» нуклеиново-протеиновый комплекс, так как полинуклеотиды без ферментов не способны к саморепродукции. Общее признание в этой концепции получила идея, согласно которой блоками макромолекулы была ДНК или РНК. В 80-е гг. было обнаружено, что РНК способна к самовоспроизведению без посредничества белков — ферментов. В 1989 г. сформировалось представление о древней РНК, совмещающей черты фенотипа и генотипа (Д. Джойс), что реализовыва-ло идею Дарвина об эволюции ее в ДНК с утратой самостоятельных каталитических функций. Но вскоре оказалось, что в условиях, существовавших на древней Земле, синтез РНК протекал бы с трудом. Кроме того, непонятно участие довольно редкого элемента — фосфора — в качестве компонента нуклеиновых кислот.
В 1981 г. М.Эйген продемонстрировал, что в растворах мономеров нуклеотидов в присутствии фермента полимеразы могут синтезироваться полимерные молекулы РНК, способные к репликациям, мутациям и даже к борьбе за существование с молекулами-предками (рис. 12.12). В 1974 г. Л. Орджел экспериментально показал, что нуклеотидные мономеры полимеризуются и без полимераз, образуя в конечном итоге РНК, если в растворе имеется «затравка» этой молекулы. Таким образом, доказана автономность и возможность образования на Земле органических веществ, лежащих в основе метаболизма живых существ, и нуклеиновых кислот, носителей наследственной информации. На базе экспериментов Эйгена и Орджела сформировалась гипотеза возникновения жизни по схеме «гены—ферменты—метаболизм», утверждающая одномоментное появление репликации и метаболизма. Но есть доказательства, что эта схема не верна и даже ошибочна.
Известный биолог из Принстона Ф.Дайсон в книге «Происхождение жизни» (2000) развивает гипотезу независимого появления репликации и метаболизма. Современные данные палеонтологии указывают на следы молекул углеводов и порфирина (предшественника хлорофилла) в ископаемых структурах Гренландии (возраст 3,5 — 3,8 млрд лет), тогда как остатков нуклеиновых кислот не обнаружено. Значит, одновременно эти явления не могли возникнуть, репликация и метаболизм имеют разные носители (нуклеиновые кислоты и белки соответственно) и возникли авто-
516 номно. Кроме того, в предбиологической среде не было образцов РНК и тем более ферментов, поэтому результаты экспериментов ничего не говорят о происхождении жизни, да и неизбежные ошибки при репликации должны накапливаться, что привело бы к гибели биосистем. Поэтому Дайсон считает наиболее правдоподобной гипотезу Опарина (концепцию голобиоза), согласно которой сначала появились белковые коацерваты — проклетки, которые обладали гомеостатом и размножались, но не имели механизма репликации. Компьютерное моделирование показало, что из неорганизованной молекулярной совокупности в коацервате возникает организованный комплекс, который приобретает белковый гомеостаз (при числе молекул более 2000 возникает 8 — 10 мономеров и дискриминантами фактор фермента порядка 60—100). Значит, на этапе предбиологической эволюции аминокислот достаточно 8 — 10 (а не 20, как сейчас), и для ферментов 60 — 100 (а не 5000 — 10 000, как сейчас). Вероятность достижения порядка оказалась около 50%, а успешного синтеза полимеров — 75%. Поэтому гипотеза Опарина—Дайсона проверена компьютерным моделированием и предлагает следующий порядок возникновения биоструктур: клетка — ферменты — гены.
Появились новые гипотезы зарождения жизни: в тонких пленках органики, адсорбированной на кристаллах пирита или апатитов; в геотермальных источниках на дне океана. Выделяют особую
517

роль в происхождении жизни соединений серы (К. де Дюв). Ясности пока нет, но очевидно, что существование жизни повышает энтропию Вселенной, переводя локально материю в организованное, структурированное состояние.
Вопросы для самопроверки и повторения

  1. Какие виды изменчивости Вам известны, в чем их сходства и отличия? Объясните, какая форма изменчивости дает исходный материал для естественного отбора в природе.
  2. Докажите, что естественный отбор является направляющим фактором эволюции. Сопоставьте понятия «популяция» и «вид». Докажите, что популяция является единицей эволюции. Почему разные популяции одного вида отличаются по частоте генов?
  3. Каковы основные положения и значение клеточной теории в развитии биологии? Какими методами удалось изучить состав живой клетки и ее молекулярное строение? Каковы особенности строения и функции ядра клетки и цитоплазмы?
  4. Раскройте сущность микро- и макроэволюции, приведите примеры действующих в них процессов. Каковы доказательства эволюции органического мира?
  5. Опишите строение и функции клеточных мембран. Что такое «ионный насос»?
  6. Оцените гипотезы происхождения живого на Земле с современных позиций.
  7. Охарактеризуйте онтогенетический уровень организации живой материи.
  8. Что такое «мутация» и какие мутации бывают? Как определить, что приобретенные признаки не наследуются? Как это показали опыты Вейсмана?
  9. Дайте понятие о неодарвинизме и синтетической теории эволюции.

10. Поясните, как происходит эволюция видов с точки зрения генетики.

Какова роль мутаций и окружающей среды в эволюции живого?
.

Комментарии (2)
Обратно в раздел Наука












 





Наверх

sitemap:
Все права на книги принадлежат их авторам. Если Вы автор той или иной книги и не желаете, чтобы книга была опубликована на этом сайте, сообщите нам.