Библиотека
Теология
КонфессииИностранные языкиДругие проекты |
Комментарии (3) Садохин А. Концепции современного естествознанияОГЛАВЛЕНИЕГлава 8 Современные концепции химии8.1. Специфика химии как науки Основные задачи химииОдной из важнейших для жизни человека естественных наук является химия. Химия — наука о составе, внутреннем строении и превращении вещества, а также о механизмах этих превращений. Практически ежедневно каждый человек может наблюдать, как те или иные вещества подвергаются различным изменением: железный предмет под воздействием влаги покрывается ржавчиной, опавшие листья деревьев постепенно истлевают, превращаясь в перегной, и т.д. Результат этих изменений — появление новых веществ с совершенно иными свойствами. Такого рода процессы называются химическими явлениями, при которых из одних веществ образуются другие, новые вещества, а наука, изучающая превращения веществ, называется химией. Еще Д. И. Менделеев обратил внимание на то, что химия, в отличие от многих других наук (например, биологии или географии), сама создает свой предмет исследования. Как никакая другая наука, она является одновременно и наукой, и производством. Химия всегда была нужна человечеству для того, чтобы получать из природных веществ материалы с необходимыми для повседневной жизни и производства свойствами. Поэтому все химические знания, приобретенные за многие столетия и представленные в виде теорий, законов, методов, технологий, объединяет одна-единственная непреходящая, главная задача химии — получение веществ с заданными свойствами. Но это — производственная задача, и, чтобы ее реализовать, нужно уметь из одних веществ производить другие, т.е. осуществлять качественные превращения веществ. А поскольку качество — это совокупность свойств вещества, то необходимо знать, от чего зависят эти свойства. Иначе говоря, чтобы решить названную производственную 184 задачу, химия должна справиться с теоретической проблемой генезиса (происхождения) свойств вещества. Таким образом, основанием химии выступает основная двуединая проблема — получение веществ с заданными свойствами (на достижение ее направлена производственная деятельность человека) и выявление способов управления свойствами вещества (на реализацию этой задачи направлена научно-исследовательская работа ученых). Система химииОсновная двуединая проблема химии является системообразующим началом данной науки. Она возникла в глубокой древности и не потеряла своей актуальности в наши дни. Естественно, что в разные исторические эпохи данная задача решалась по-разному, так как способы ее решения зависят от уровня материальной и духовной культуры общества, а также внутренних закономерностей, присущих ходу научного познания. Достаточно сказать, что изготовление таких материалов, как, например, стекло и керамика, краски и душистые вещества, в древности осуществлялось совершенно иначе, чем в XVIII в. и позже. Важнейшей особенностью основной проблемы химии является то, что она имеет всего четыре способа решения. Речь при этом идет не о частных методах изучения превращений веществ — их множество, а о самых общих способах решения вопроса: от чего, ot каких факторов зависят свойства веществ. А зависят они от четырех факторов:
Поскольку способы решения основной проблемы химии появлялись последовательно, то в истории химии можно выделить четыре последовательно сменявших друг друга этапа. В то же время с каждым из названных способов решения основной проблемы химии связана собственная концептуальная система знаний. Эти четыре концептуальных системы знания находятся в отношениях иерархии (субординации). В системе химии они являются подсистемами, так же как сама химия представляет собой подсистему естествознания в целом. Концептуальные системы химии можно представить наглядно в виде схемы.
185 В развитии химии происходит не смена, а строго закономерное, последовательное появление концептуальных систем. При этом каждая вновь появляющаяся система не отрицает предыдущую, а, наоборот, опирается на нее и включает в себя в преобразованном виде. Таким образом, формируется система химии — единая целостность всех химических знаний, которые возникают и существуют не отдельно друг от друга, а в тесной взаимосвязи, дополняют друг друга и объединяются в концептуальные системы химических знаний, которые находятся между собой в отношениях иерархии. 8.2. Первый уровень химического знания. Учение о составе веществаПервый по-настоящему действенный способ решения проблемы происхождения свойств вещества появился в XVII в. в работах английского ученого Р. Бойля. Его исследования показали, что качества и свойства тел не имеют абсолютного характера и зависят от того, из каких химических элементов эти тела составлены. У Бойля наименьшими частичками вещества оказывались неосязаемые органами чувств мельчайшие структуры — атомы, или, как он их называл, minima naturalia. Эти частицы могли связываться друг с другом, образуя более крупные соединения — кластеры, по терминологии Бойля. Связь частиц в кластерах была достаточно прочной, и поэтому кластеры сами были невидимыми глазу кирпичиками для построения реальных физических тел. В зависимости от объема и формы кластеров, от того, находились ли они в движении или покоились, зависели и свойства природных тел. Сегодня мы вместо термина «кластер» используем понятие «молекула». В период с середины XV11 в. до первой половины XIX в. учение о составе вещества представляло собой всю тогдашнюю химию. Оно существует и сегодня, представляя собой первую концептуальную систему химии. На этом уровне химического знания ученые решали и решают три важнейшие проблемы: химического элемента, химического соединения и задачу создания новых материалов с использованием вновь открытых химических элементов. Концепция химического элементаКонцепция химического элемента появилась в химии как результат стремления человека обнаружить первоэлемент природы. Корни решения данной проблемы уходят в Древнюю Грецию, где возникли учения о первоэлементах природы. Там же возникла и атомистическая концепция природы, возрожденная в Новое время 186 в химии Р. Бойлем. Именно он положил начало современному представлению о химическом элементе как о простом теле, пределе химического разложения вещества, переходящем без изменения из состава одного сложного тела в другое. Но еще целый век после этого химики делали ошибки в выделении химических элементов. Дело в том, что, сформулировав понятие химического элемента, химики еще не знали ни одного из них. Стремясь получить элементы в чистом виде, они пользовались считавшимся тогда универсальным методом прокаливания, и окалину принимали за чистый элемент. Так что известные тогда металлы — железо, медь, свинец — принимали за сложные тела, состоявшие из соответствующего элемента и флогистона. Однако именно флогистонная теория, ложная по сути, оказалась двигателем многих исследований, приведших в итоге к истинным выводам. Этот вывод был сделан Д.И. Менделеевым, доказавшим, что свойства химического элемента зависят от места данного атома в периодической системе. Сам Менделеев определял это место по атомной массе, но в XX в. было выяснено, что порядковый номер элемента зависит не от атомной массы, а от заряда атомного ядра и количества электронов. В настоящее время известно, что атом представляет собой сложную квантово-механическую систему, состоящую из положительно заряженного ядра и отрицательно заряженной электронной оболочки. Выяснены особенности строения электронных орбиталей атомов всех элементов и особая роль внешнего электронного уровня атома, от количества электронов в котором зависит реакционная способность элемента — химическая активность вещества, учитывающая как разнообразие реакций, возможных для данного вещества, так и их скорость. Наиболее активными с химической точки зрения являются элементы, имеющие минимальную атомную массу и 6—7 электронов на внешнем электронном уровне (фтор, хлор, кислород). Это связано с тем, что они стремятся достроить свою электронную оболочку путем присоединения недостающего числа электронов. Также большой реакционной способностью отличаются металлы, обладающие большой атомной массой и имеющие 1—2 электрона на внешнем электронном уровне (барий, цезий), стремящиеся отдать их для его достройки. Современный окружающий человека мир заполнен многочисленными соединениями, образованными элементами периодической системы Менделеева. Во времена самого Менделеева было известно всего 62 химических элемента. В 30-е гг. XX в. таблица Менделеева включала 88 элементов, а всего в ней было 92 клетки (элемент под номером 92 — это уран). Сегодня науке известно 110 химических элементов (элемент 109 получил название мейтнерий, 110-й элемент еще не имеет официального названия), и химиков продолжает волновать вопрос, сколько всего элементов в таблице Менделеева. 187 Предполагается, что на первоначальной стадии развития Земли существовали трансурановые элементы с порядковыми номерами до 106-го. Такие элементы имели небольшую продолжительность жизни по сравнению с возрастом Земли и поэтому полностью распались, не сохранившись до наших дней. Самым долгоживущим элементом из данной группы оказался плутоний-244 с периодом полураспада 82,2 млн. лет. В 1971 г. из минерала бастнезита удалось выделить некоторое количество атомов этого элемента. Но в основном все трансурановые элементы были получены искусственным путем. В 1940 г. был синтезирован нептуний, после этого были зарегистрированы еще 15 трансурановых элементов с номерами до 107-го. Трансурановые элементы с атомными номерами до 100-го можно получить в ядерном реакторе путем бомбардировки ядер изотопа урана-238 нейтронами. Более тяжелые элементы получают только в ускорителях в очень незначительных количествах. Для этого уран бомбардируют ионами ксенона, гадолиния, самария, гафния или самого урана. В результате этого образуются очень тяжелые промежуточные ядра. Но такие реакции стали возможны лишь с 1971 г., когда появились новые мощные ускорители, способные разогнать тяжелые ионы до высоких энергий. Современная теория позволяет с большой вероятностью рассчитать стабильность сверхтяжелых элементов и предсказать их физические и химические свойства. Поэтому химики предполагают, что элементы с порядковыми номерами между 114-м и 164-м должны обладать неожиданно высокой стабильностью. Считается, что в районе этих порядковых номеров в периодической системе должен существовать так называемый островок стабильности, на котором возможно получение изотопов с периодом полураспада 108 лет. Верхняя граница стабильности должна приближаться к номеру 174. Если эти элементы будут получены, то их можно будет использовать в промышленном производстве и энергетике. Но для их синтеза нужны новые экспериментальные методы и технические средства. Химическим элементом называют все атомы, имеющие одинаковый заряд ядра. Особой разновидностью химических элементов являются изотопы, у которых ядра атомов отличаются числом нейтронов (поэтому у них разная атомная масса), но содержат одинаковое число протонов и поэтому занимают одно и то же место в периодической системе элементов. Термин «изотоп» был введен в 1910 г. Фредериком Содди, известным английским радиохимиком, лауреатом Нобелевской премии. Различают стабильные (устойчивые) и нестабильные (радиоактивные) изотопы. 188 С момента открытия изотопов наибольший интерес вызвали радиоактивные изотопы, которые стали широко использоваться в атомной энергетике, приборостроении, медицине и т.д. В настоящее время выпускается огромное количество различных приборов, содержащих радиоактивные изотопы. Они служат для определения плотности, однородности, гигроскопичности и других характеристик материалов. Довольно широко используется метод меченых атомов, который позволяет проследить за перемещением химических соединений при физических, химических и биологических процессах Для этого в исследуемое вещество вводятся радиоактивные изотопы определенных элементов и ведется наблюдение за их продвижением. Так можно проследить за превращением веществ как в доменной печи, так и в живом организме. Например, с помощью изотопа кислорода-18 стало возможным выяснение механизма дыхания живых организмов. В медицине с помощью радиоактивных изотопов лечат многие заболевания, в том числе онкологические. Кроме того, батареи небольшой мощности на изотопах плутония-238 и кюрия-224 применяются в приборах для стабилизации ритма сердца. В химической промышленности изотопы используются для облучения полиэтилена и других полимеров с целью повышения их термостойкости и прочности. Таким образом, правильное использование радиоактивных изотопов приносит несомненную пользу человечеству. К сожалению, в последнее время об этом стали забывать, все меньше доверяя радиации, которая ассоциируется с атомной бомбой или Чернобыльской катастрофой. Забыты те времена, когда радиоактивность и рентгеновское излучение были только что открыты и их посчитали панацеей в медицине. Мало кто помнит о том, что в начале XX в. в свободной продаже были радиевые подушки, радиоактивная зубная паста и косметика, считавшиеся полезными для здоровья. Уже в 20—30-е гг. XX в. появились первые свидетельства того, что радиоактивное излучение неблагоприятно влияет на живые организмы, вызывая генетические изменения — мутации, а также различные виды онкологических заболеваний. Последствия атомной бомбардировки Хиросимы и Нагасаки подтвердили эти выводы. Поэтому современная медицина двойственно относится к радиации. С одной стороны, говорится, что только в малых дозах радиация безопасна (в природе существует естественный радиоактивный фон), с другой — продолжают использовать рентгеновское обследование и лучевую терапию в лечебных целях. Концепция химических соединенийДолгое время химики эмпирическим путем определяли, что относится к химическим соединениям, а что — к простым телам или 189 смесям. Еще в начале XIX в. Ж. Пруст сформулировал закон постоянства состава, в соответствии с которым любое индивидуальное химическое соединение обладает строго определенным, неизменным составом — прочным притяжением составных частей (атомов) и тем самым отличается от смесей. Также Пруст установил, что всякое чистое вещество независимо от его происхождения и способа получения имеет один и тот же состав. Теоретическое обоснование закона Пруста было дано Дж. Дальтоном в законе кратных отношений. Согласно этому закону состав любого вещества можно представить как простую формулу, а эквивалентные составные части молекулы — атомы, обозначавшиеся соответствующими символами, могли замещаться на другие атомы. После этого долго считали, что состав химического соединения может быть только постоянным. Но дальнейшее развитие химии и изучение все большего числа соединений приводили химиков к мысли, что наряду с веществами, имеющими постоянный состав, существуют еще и соединения переменного состава, или бертолли-ды. В результате были переосмыслены представления о молекуле в целом. Молекулой, как и прежде, продолжали называть наименьшую частичку вещества, способную определять его свойства и существовать самостоятельно. Но в XX в. была понята сущность химической связи, которая стала пониматься как вид взаимодействия между атомами и атомно-молекулярными частицами, обусловленный совместным использованием их электронов. Существуют кова-лентные полярные, ковалентные неполярные ионные, водородные и металлические химические связи, отличающиеся характером физического взаимодействия частиц между собой. Поэтому теперь под химическим соединением понимают определенное вещество, состоящее из одного или нескольких химических элементов, атомы которых за счет взаимодействия друг с другом объединены в частицу, обладающую устойчивой структурой — молекулу, комплекс, монокристалл или иной агрегат. Проблема создания новых материаловНа сегодняшний день науке известно 110 химических элементов, но по удельному весу они распределены крайне неравномерно. Так, 98,6% массы физически доступного слоя Земли составляют всего восемь химических элементов: кислород (47%), кремний (27,5), алюминий (8,8), железо (4,6), кальций (3,6), натрий (2,6), калий (2,5), магний (2,1). Однако все эти элементы используются непропорционально. Например, железа содержится в Земле в два 190 раза меньше, чем алюминия. Однако для более 95% всех металлических изделий изготавливаются из железорудного сырья. Поэтому для современной химии важнейшей задачей является рациональное использование имеющихся ресурсов. Для этого нужно использовать химические элементы в производстве в соответствии с их реальными ресурсами в природе, заменить дефицитное сырье имеющимся в изобилии, утилизировать отходы и использовать вторичное сырье. Сегодня на смену старым материалам приходят новые. Это связано с тем, что новые материалы более эффективны, чем старые. Кроме того, нужно искать заменители традиционным видам сырья. Поэтому исследования ученых направлены на изучение и использование силикатов, которые составляют 97% массы земной коры. Именно они должны стать основным сырьем для производства всех строительных материалов и полуфабрикатов при изготовлении керамики, способной конкурировать с металлами. Внимание химиков к металлам и керамике не случайно, именно они составляют на 90% современную материально-техническую базу производства. В мире ежегодно выплавляется около 600 млн. т металла — более 150 кг на каждого жителя планеты. Примерно столько же производится и керамики вместе с кирпичом. Но металлов не так много, кроме того, их изготовление обходится в сотни и тысячи раз дороже, чем получение керамики. Разница в их стоимости до недавнего времени никого особенно не волновала, так как каждый материал имел свое строго определенное назначение. Однако благодаря развитию химии открывается все больше возможностей для замены металла керамикой. Очевидное преимущество керамики состоит в том, что ее плотность на 40% ниже, чем плотность металлов. Это позволяет соответственно снизить массу изготовляемых из керамики деталей. А используя в производстве керамики такие химические элементы, как цирконий, титан, бор, германий, хром, молибден, вольфрам и др., можно получать керамические изделия с заранее заданными свойствами. Так, стекло долгое время использовалось лишь в качестве украшений, из него изготавливались бусины. Затем из стекла стали изготавливать посуду, оконные стекла и т.д. К XX в. научились уже выплавлять стекло более 800 разновидностей, из него делали около 43 тысяч различных изделий. Но стекло обладало серьезным недостатком — оно было хрупким, изделия из него легко бились и ломались. Поэтому важнейшей задачей ученых и инженеров в XX в. стало получение небьющегося стекла. Это стало возможным после того, как в 20—30-е гг. XX в. была выяснена его структура. После этого появилась возможность делать стекло не только небьющимся, но и жаропрочным, способным выдерживать перепады температур от 1000°С до комнатной температуры. Кроме того, было получено стек- 191 ло, которое можно обрабатывать, как обычный металл. А композиционные материалы, изготовленные из химически обработанного стекла со слоями пластика, обладают прочностью металла (бронестекло). Стекла с напыленным на них тонким слоем металла летом задерживают лучи палящего солнца, а зимой сохраняют тепло. Производится огромное количество стекловолокнистых материалов, которые используются для армирования, отделки, склеивания, декорирования, изолирования и т.п. Кроме того, стекловолокно используется в качестве светопровода, по которому можно передать большое количество информации. Если традиционное стекло является хорошим изолятором, то в последнее время появилось стекло с полупроводниковыми свойствами, которое изготавливается методом тонкопленочной технологии. Таким образом, область применения стекла постоянно расширяется, традиционный материал приобрел новые свойства. Меняют в наши дни свои свойства и силикатные и керамические материалы, также давно известные человеку. 90% всех производимых в мире строительных материалов приходится на силикаты. К ним относятся давно известные человеку (со времен этрусков) бетон и цемент, а также современные материалы — высокопрочный полимер-бетон; огнеупорный бетон, выдерживающий температуру до 1800°С; легкий бетон, в который можно забивать гвозди; бетон с высокими теплоизолирующими свойствами; бетон с малым влагопоглощением. Традиционная керамика — это фаянс, фарфор, каменная керамика, которую получают из смеси глины, кварца и полевого шпата, обработанной при высокой температуре. Из керамики изготавливаются кирпичи разных видов, изоляторы, а также различные виды посуды. В последнее время была получена керамика высокой термической и коррозионной стойкости и прочности. Некоторые керамические материалы начинают разрушаться только при температуре выше 1600°С. В сосудах из такой керамики можно плавить металлы, из нее можно делать камеры сгорания для космических ракет и детали для металлорежущих инструментов. А в начале 90-х гг. XX в. был синтезирован керамический материал на основе оксидов меди, обладающий свойством высокотемпературной сверхпроводимости — он переходит в сверхпроводящее состояние при 170 К. В XX в. наряду с традиционными материалами появились новые — полимерные и синтетические. Они находят все большее применение, потеснив традиционные материалы. На основе природных и синтетических полимеров получают пластмассы — материалы, способные приобретать заданную форму при нагревании под давлением и устойчиво сохранять ее после охлаждения. Области применения полимеров весьма разнообразны — от текстильной промышленности до микроэлектроники. Главное достоинство этих материалов — их дешевизна и легкость в переработке. 192 Кроме того, созданы пластмассы, способные заменить металлы, термостойкие пластмассы для авиационной и ракетной техники. Все больше пластмасс используется в строительстве — пластмассовые рамы, облицовочные материалы, кровля и т.д. Существуют проекты создания полностью пластмассовых автомобилей, т.е. доля пластмасс по сравнению с металлами становится все больше. Настоящая революция произошла в текстильной промышленности, в которой увеличивается доля искусственных тканей и синтетических материалов. Более 50% современных волокон производится из материалов, синтезированных за последние полвека, — вискозы, полиамида, полиакрилонитрила и полиэфиров. Разработаны технологии химической обработки и отделки тканей из натуральных волокон — обработка шерсти для обеспечения устойчивости против моли, уменьшение усадки материала и придание ему несминаемости, обеспечение антистатических, антимикробных и гря-зеотталкивающих свойств. В настоящее время химики работают над созданием нового поколения искусственных волокон со свойствами, максимально приближенными к естественным материалам. Уже созданы ткани, обладающие высокой степенью защиты от солнечных лучей. Производятся ткани, обладающие лучшими свойствами льна, хлопка, шерсти. Появились микроволокна с диаметром в десять раз тоньше волоса. Они позволяют ткать материалы мягкие, защищающие от сырости, но пропускающие при этом воздух к телу. Пустотелые волокна, также разработанные химиками, лучше противостоят холоду. Есть волокна с триклозаном — веществом, останавливающим размножение микробов. Одной из разновидностей синтетических тканей является кевлар — материал, который в пять раз прочнее на разрыв, чем сталь. Он идет на изготовление пуленепробиваемых жилетов, курток и т.д. Создание космических скафандров — также заслуга химиков. В ткань скафандра встроены миллионы микроскопических капсул с парафином, которые при нагревании плавятся и отбирают тепло у веществ, находящихся рядом, а при охлаждении отвердевают и выделяют тепло, согревающее космонавта. Синтез уникальных материалов заставляет по-новому исследовать все химические элементы и накапливать данные для производства новых материалов. 8.3. Второй уровень химического знания. Структурная химияМногочисленные эксперименты по изучению свойств химических элементов в первой половине XIX в. привели ученых к убеж- 193 дению, что свойства веществ и их качественное разнообразие обусловлены не только составом элементов, но и структурой их молекул. К этому времени мануфактурное производство сменилось фабричным, опирающимся на машинную технику и широкую сырьевую базу. В химическом производстве стала преобладать переработка огромных масс вещества растительного и животного происхождения. Качественное разнообразие данных веществ потрясающе велико — сотни тысяч химических соединений, состав которых, тем не менее, крайне однообразен, так как они состоят из нескольких элементов-органогенов. Это — углерод, водород, кислород, сера, азот, фосфор. Объяснение необычайно широкому разнообразию органических соединений при столь бедном элементном составе было найдено в явлениях, получивших названия изомерии и полимерии. Так было положено начало второму уровню развития химических знаний, который получил название структурной химии. Структурная химия стала более высоким уровнем по отношению к учению о составе вещества. При этом химия из науки преимущественно аналитической превратилась в науку синтетическую. Главным достижением этого этапа развития химии стало установление связи между структурой молекул и реакционной способностью веществ. Сам термин «структурная химия» — понятие условное. В нем, прежде всего, подразумевается такой уровень химических знаний, при котором, комбинируя атомы различных химических элементов, можно создать структурные формулы любого химического соединения. Возникновение структурной химии означало, что появилась возможность для целенаправленного качественного преобразования веществ, создания схемы синтеза любых химических соединений, в том числе и ранее неизвестных. Основы структурной химии были заложены еще Дж. Дальтоном, который показал, что любое химическое вещество представляет собой совокупность молекул, состоящих из определенного количества атомов одного, двух или трех химических элементов. Затем И. Бер-целиус выдвинул идею, что молекула представляет собой не простое нагромождение атомов, а определенную упорядоченную структуру атомов, связанных между собой электростатическими силами. Как позже показал химик Ш. Жерар, это утверждение было верно не всегда, поэтому еще в середине XIX в. структура молекул оставалась загадочной. В 1857 г. немецкий химик А. Кекуле опубликовал свои наблюдения о свойствах некоторых элементов, могущих заменять атомы водорода в ряде соединений, и ввел новый термин — сродство. Он стал обозначать количество атомов водорода, которые может заместить данный химический элемент. Число единиц сродства, прису- 194 щее данному химическому элементу, Кекуле назвал вагентностыо. При объединении атомов в молекулу происходило замыкание свободных единиц сродства. Таким образом, понятие «структура молекулы» свелось к построению наглядных формульных схем, которые служили химикам руководством в их практической работе, показывали, какие исходные вещества нужно брать для получения конечного продукта. Структурная химия позволяет наглядно демонстрировать валентность химических элементов как число единиц сродства, присущих атому: =С=; -О-; Н-. Комбинируя атомы различных химических элементов с их единицами сродства, можно создать структурные формулы любого химического соединения. А это означает, что химик в принципе может создавать план синтеза любого химического соединения — как уже известного, так и еще неоткрытого. То есть химик может прогнозировать получение неизвестного соединения и проверить свой прогноз синтезом. К сожалению, схемы Кекуле не всегда можно было осуществить на практике. Часто придуманная химиками реакция, которая должна была привести к получению вещества с нужной структурной формулой, не происходила. Это было вызвано тем, что подобные формальные схемы не учитывали реакционной способности веществ, вступавших в химическую реакцию. Поэтому важнейшим шагом в развитии структурной химии стало создание теории химического строения органических соединений русским химиком А.М. Бутлеровым. Бутлеров вслед за Кекуле признавал, что образование молекул из атомов происходит за счет замыкания свободных единиц сродства, но при этом он указывал на то, с какой энергией (большей или меньшей) это сродство связывает вещества между собой. Иными словами, Бутлеров впервые в истории химии обратил внимание на энергетическую неравноценность разных химических связей. Эта теория позволила строить структурные формулы любого химического соединения, так как показывала взаимное влияние атомов в структуре молекулы, а через это объясняла химическую активность одних веществ и пассивность других. Кроме того, она указывала на наличие активных центров и активных группировок в структуре молекул. В XX в. структурная химия получила дальнейшее развитие. В частности, было уточнено понятие структуры, под которой стали понимать устойчивую упорядоченность качественно неизменной системы. Также было введено понятие атомной структуры — устойчивой совокупности ядра и окружающих его электронов, находящихся в электромагнитном взаимодействии друг с другом, и молекулярной структуры — сочетания ограниченного числа атомов, имеющих закономерное расположение в пространстве и связанных друг с другом химической связью с помощью валентных электронов. 195 На основе достижений структурной химии у исследователей появилась уверенность в положительном исходе экспериментов в области органического синтеза. Сам термин «органический синтез» появился в 1860—1880-е гг. и стал обозначать целую область науки, названную так в противоположность общему увлечению анализом природных веществ. Этот период в химии был назван триумфальным шествием органического синтеза. Химики гордо заявляли о своих ничем не сдерживаемых возможностях, обещая синтезировать из угля, воды и воздуха все самые сложные тела, вплоть до белков, гормонов и пр. И действительность, казалось, подтверждала эти заявления: за вторую половину XIX в. число органических соединений за счет вновь синтезированных возросло с полумиллиона до двух миллионов. В это время появились всевозможные азокрасители для текстильной промышленности, различные препараты для фармации, искусственный шелк и т.д. До этого подобные материалы добывались в ограниченных количествах и с огромными затратами низкопроизводительного, преимущественно сельскохозяйственного, труда. Современная структурная химия достигла больших результатов. Синтез новых органических веществ позволяет получить полезные и ценные материалы, отсутствующие в природе. Так, ежегодно в мире синтезируют тысячи килограммов аскорбиновой кислоты (витамина С), множество новых лекарств, среди которых — безвредные антибиотики, лекарства против гипертонии, язвенной болезни и др. Самым последним достижением структурной химии является открытие совершенно нового класса металлорганических соединений, которые за свою двухслойную структуру получили название «сэндвичевых» соединений. Молекула этого вещества представляет собой две пластины из соединений водорода и углерода, между которыми находится атом какого-либо металла. Исследования в области современной структурной химии идут по двум перспективным направлениям:
Решение каждой из этих проблем имеет свои сложности. Так, для решения первой проблемы необходимо соблюдение таких условий выращивания кристаллов, которые исключали бы воздействие на процесс всех внешних факторов, в том числе и поля гравитации (земного притяжения). Поэтому кристаллы с заданными свойства- 196 ми выращиваются на орбитальных станциях в космосе. Решение второй проблемы затруднено тем, что, наряду с запрограммированными дефектами, практически всегда образуются и нежелательные нарушения. Тем не менее, классическая структурная химия была ограничена рамками сведений только о молекулах вещества, находящегося в дореакционном состоянии. Этих сведений недостаточно для того, чтобы управлять процессами превращения вещества. Так, согласно структурным теориям должны быть вполне осуществимы многие химические реакции, которые на практике не происходят. Большое количество реакций органического синтеза, основанных лишь на принципах структурной химии, имеют столь низкие выходы продукции и такие большие отходы в виде побочных продуктов, что не могут быть использованы в промышленности. К тому же подобный синтез требовал в качестве исходного сырья дефицитных активных реагентов и сельскохозяйственной продукции, в том числе и пищевой, что крайне невыгодно в экономическом отношении. Поэтому изумление успехами структурной химии было недолгим. Интенсивное развитие автомобилестроения, авиации, энергетики, приборостроения в первой половине XX в. выдвинуло новые требования к производству материалов. Необходимо было получить высокооктановое моторное топливо, специальные синтетические каучуки, пластмассы, высокостойкие изоляторы, жаропрочные органические и неорганические полимеры, полупроводники. Для получения этих материалов способ решения основной проблемы химии, основанный на учении о составе и структурных теориях, был явно недостаточен. Он не учитывал резких изменений свойств вещества в результате влияния температуры, давления, растворителей и многих других факторов, воздействующих на направление и скорость протекания химических процессов. Учет и использование этих факторов вывело химию на новый качественный уровень ее развития. 8.4. Третий уровень химического знания. Учение о химическом процессеПод влиянием новых требований производства возникло учение о химических процессах, в котором учитывается изменение свойств вещества под влиянием температуры, давления, растворителей и других факторов. После этого химия становится наукой уже не только и не столько о веществах как законченных предметах, но и наукой о процессах и механизмах изменения вещества. Благодаря этому она обеспечила создание производства синтетических материалов, заменяющих дерево и металл в строительных работах, пи- 197 щевое сырье в производстве олифы, лаков, моющих средств и смазочных материалов. Производство искусственных волокон, каучу-ков, этилового спирта и многих растворителей стало базироваться на нефтяном сырье, а производство азотных удобрений — на основе азота воздуха. Появилась технология нефтехимических производств с ее поточными системами, обеспечивающими непрерывные высокопроизводительные процессы. Так, еще в 1935 г. такие материалы, как кожа, меха, резина, волокна, моющие средства, олифа, лаки, уксусная кислота, этиловый спирт, производились всецело из животного и растительного сырья, в том числе из пищевого. На это расходовались десятки миллионов тонн зерна, картофеля, жиров, сырой кожи и т.д. Но уже в 1960-е гг. 100% технического спирта, 80% моющих средств, 90% олифы и лаков, 40% волокон, 70% каучука и около 25% кожевенных материалов изготовлялись на основе газового и нефтяного сырья. Помимо этого, химия дает ежегодно сотни тысяч тонн мочевины и нефтяного белка в качестве корма скоту и около 200 млн. т удобрений. Столь впечатляющие успехи были достигнуты на основе учения о химических процессах — области науки, в которой осуществлена наиболее глубокая интеграция физики, химии и биологии. В основу данного учения положены химическая термодинамика и кинетика, поэтому этот раздел науки в равной степени принадлежит физике и химии. Одним из основоположников этого научного направления стал русский химик Н.Н. Семенов — лауреат Нобелевской премии, основатель химической физики. Он в своей Нобелевской лекции 1965 г. заявил, что химический процесс — это то основное явление, которое отличает химию от физики, делает ее более сложной наукой. Химический процесс становится первой ступенью при восхождении от таких относительно простых физических объектов, как электрон, протон, атом, молекула, к сложным, многоуровневым живым системам. Ведь любая клетка живого организма, по существу, представляет собой своеобразный сложный реактор. Поэтому химия становится мостом от объектов физики к объектам биологии. Учение о химических процессах базируется на идее, что способность к взаимодействию различных химических реагентов определяется кроме всего прочего и условиями протекания химических реакций. Эти условия могут оказывать воздействие на характер и результаты химических реакций. Подавляющее большинство химических реакций находится во власти стихии. Конечно, есть реакции, которые не требуют особых средств управления или особых условий. Таковы всем известные реакции кислотно-основного взаимодействия (нейтрализации). Однако подавляющее большинство реакций являются трудноконтро-лируемыми. Есть реакции, которые просто не удается осуществить, 198 хотя они в принципе осуществимы. Существуют реакции, которые трудно остановить: горения и взрывы. И, наконец, встречаются реакции, которые трудно ввести в одно желательное русло, так как они самопроизвольно создают десятки непредвиденных ответвлений с образованием сотен побочных продуктов. Поэтому важнейшей задачей для химиков становится умение управлять химическими процессами, добиваясь нужных результатов. В самом общем виде методы управления химическими процессами можно подразделить на термодинамические и кинетические. Термодинамические методы влияют на смещение химического равновесия реакции. Кинетические методы влияют на скорость протекания химической реакции. Выделение химической термодинамики в самостоятельное направление обычно связывают с появлением в 1884 г. книги голландского химика Я. Вант-Гоффа «Очерки по химической динамике». В ней обоснованы законы, устанавливающие зависимость направления химической реакции от изменения температуры и теплового эффекта реакции. Энергетика химических процессов тесно связана с законами термодинамики. Химические реакции, протекающие с выделением энергии, называются экзотермическими реакциями. В них энергия высвобождается одновременно с уменьшением внутренней энергии системы. Существуют также эндотермические реакции, протекающие с поглощением энергии. В этих реакциях идет повышение внутренней энергии системы за счет притока тепла. Измеряя количество энергии, выделяющейся при реакции (тепловой эффект химической реакции), можно судить об изменении внутренней энергии системы. Тогда же французский химик А. Ле-Шателье сформулировал свой знаменитый принцип подвижного равновесия, вооружив химиков методами смещения равновесия в сторону образования целевых продуктов. Эти методы управления и получили название термодинамических методов. Каждая химическая реакция в принципе обратима, но на практике равновесие смещается в ту или иную сторону. Это зависит как от природы реагентов, так и от условий протекания процесса. Существует много реакций, равновесие в которых смещено в сторону образования конечных продуктов: к ним относятся реакция нейтрализации, реакции с удалением готовых продуктов в виде газов или осадков. Однако существует немало химических реакций, равновесие в которых смещено влево, в сторону образования исходных веществ. Чтобы их осуществить, требуются особые термодинамические рычаги — увеличение температуры и давления (если реакция происходит 199 в газовой фазе), а также концентрации реагирующих веществ (если реакция протекает в жидкой фазе). Термодинамические методы преимущественно влияют на направление химических процессов, а не на их скорость. Управлением скоростью химических процессов занимается химическая кинетика, в которой изучается зависимость протекания химических процессов от различных структурно-кинетических факторов — строения исходных реагентов, их концентрации, наличия в реакторе катализаторов и других добавок, способов смешения реагентов, материала и конструкции реактора и т.п. Задача исследования химических реакций является очень сложной. Ведь при ее решении необходимо выяснить механизм взаимодействия не просто двух реагентов, а еще и «третьих тел», которых может быть несколько. В этом случае наиболее целесообразно поэтапное решение, при котором вначале выделяется наиболее сильное действие какого-нибудь одного из «третьих тел», чаще всего катализатора. Кроме того, следует понять, что практически все химические реакции представляют собой отнюдь не простое взаимодействие исходных реагентов, а сложные цепи последовательных стадий, где реагенты взаимодействуют не только друг с другом, но и со стенками реактора, могущими как катализировать (ускорять), так и инги-бировать (замедлять) процесс. Также на интенсивность химических процессов оказывают влияние случайные примеси. Вещества различной степени чистоты проявляют себя в одних случаях как более активные реагенты, а в других — как инертные. Примеси могут оказывать как каталитическое, так и ингибирующее воздействие. Поэтому для управления химическим процессом в реагирующие вещества вносятся те или иные добавки. Таким образом, влияние «третьих тел» на ход химических реакций может быть сведено к катализу, т.е. положительному воздействию на химический процесс, или ингибированию, сдерживающему процесс. Как уже отмечалось выше, способность химических элементов к взаимосвязи определяется не только их молекулярной структурой, но и условиями, при которых происходит соединение. Эти условия оказывают воздействие на результат химических реакций. Наибольшее воздействие испытывают при этом вещества с переменным составом, у которых связи между отдельными компонентами слабее. Именно на реакцию таких веществ оказывают сильное влияние различные катализаторы. Катализ — ускорение химической реакции в присутствии особых веществ — катализаторов, которые взаимодействуют с реагентами, но 200 в реакции не расходуются и не входят в состав конечных продуктов. Катализ был открыт в 1812 г. русским химиком К.С. Кирхгофом. Каталитические процессы различаются по своей физической и химической природе на следующие типы:
Наибольшее распространение имеет гетерогенный катализ, — с его помощью осуществляется 80% всех каталитических реакций в современной химии. Применение катализаторов послужило основанием коренной ломки всей химической промышленности. Благодаря им стало возможным использовать в качестве сырья для органического синтеза парафины и циклопарафины, до сих пор считавшиеся «химическими мертвецами». Катализ необходим при производстве маргарина, многих пищевых продуктов, а также средств защиты растений. Почти вся промышленность основной химии (производство неорганических кислот, оснований и солей) и «тяжелого» органического синтеза, включая получение горюче-смазочных материалов, базируется на катализе. Последнее время тонкий органический синтез становится все более каталитическим. 60—80% всей химии основано на каталитических процессах. Химики не без основания говорят, что некаталитических процессов вообще не существует, поскольку все они протекают в реакторах, материал стенок которых служит своеобразным катализатором. Долгое время сам катализ оставался загадкой природы, вызывая к жизни самые разнообразные теории, как чисто химические, так и физические. Эти теории, даже будучи ошибочными, оказывались полезными хотя бы потому, что наталкивали ученых на новые эксперименты. Все дело в том, что для большинства промышленно важных химических процессов катализаторы подбирались путем бесчисленных проб и ошибок. Так, например, для реакции синтеза аммиака в 1913—1914 гг. немецкие химики испробовали в качестве катализаторов более 20 тысяч химических соединений, следуя периодической системе элементов и разноообразно сочетая их. Сегодня можно сделать некоторые выводы о сущности катализа. 201
На современном этапе своего развития химия открыла множество эффективных катализаторов. Среди них — ионнообменные смолы, металлорганические соединения, мембранные катализаторы. Каталитическими свойствами обладают многие химические элементы периодической системы, но важнейшую роль играют металлы платиновой группы и редкоземельные металлы. С участием катализаторов скорость некоторых реакций возрастает в 10 млрд. раз. Есть катализаторы, позволяющие не просто контролировать состав конечного продукта, но и способствующие образованию молекул определенной формы, что сильно влияет на физические свойства продукта (твердость, пластичность). В современных условиях одно из важнейших направлений развития учения о химических процессах — создание методов управления этими процессами, поэтому химическая наука занимается разработкой таких проблем, как химия плазмы, радиационная химия, химия высоких давлений и температур. Химия плазмы изучает химические процессы в низкотемпературной плазме при температурах от 1000 до 10 000°С. Такие процессы характеризуются возбужденным состоянием частиц, столкновением молекул с заряженными частицами и очень высокими скоростями протекания химических реакций. В плазмохимических процессах скорость перераспределения химических связей очень высока: длительность элементарных актов химических превращений составляет 202 около 10-13 с при почти полном отсутствии обратимости реакции. Скорость аналогичных химических процессов в обычных реакторах из-за обратимости снижается в тысячи раз. Поэтому плазмохимиче-ские процессы очень производительны. Например, производительность метанового плазмохимического реактора (его размеры: длина — 65 см, диаметр — 15 см) составляет 75 т ацетилена в сутки. В этом реакторе при температуре 3000—3500°С за одну десятитысячную долю секунды около 80% метана превращается в ацетилен. Плазменная химия в последнее время все больше внедряется в промышленное производство. Уже созданы технологии производства сырья для порошковой металлургии, разработаны методы синтеза для целого ряда химических соединений. В 1970-е гг. были созданы плазменные сталеплавильные печи, позволяющие получать самые высококачественные металлы. Разработаны методы ионно-плазменной обработки поверхности инструментов, износостойкость которых увеличивается в несколько раз. Плазмохимия позволяет синтезировать ранее неизвестные материалы, такие, как металлобетон, в котором в качестве связующего элемента используются различные металлы. Металлобетон образуется при сплавлении частиц горной породы и прочном сжатии их с металлом. По своим качествам он превосходит обычный бетон в десятки и сотни раз. Одним из самых молодых направлений в исследовании химических процессов является радиационная химия, которая зародилась во второй половине XX в. Предметом ее разработок стали превращения самых разнообразных веществ под воздействием ионизирующих излучений. Источниками ионизирующего излучения служат рентгеновские установки, ускорители заряженных частиц, ядерные реакторы, радиоактивные изотопы. В результате радиационно-химических реакций вещества получают повышенную термостойкость и твердость. Наиболее важными процессами радиационно-химической технологии являются полимеризация, вулканизация, производство композиционных материалов, в том числе получение полимербето-нов путем пропитки обычного бетона каким-либо полимером с его последующим облучением. Такие бетоны имеют в четыре раза более высокую прочность, обладают водонепроницаемостью и высокой коррозионной стойкостью. Принципиально новой и исключительно важной областью учения о химических процессах является самораспространяющийся высокотемпературный синтез тугоплавких и керамических материалов. Обычно их производство осуществляется методом порошковой металлургии, суть которого заключается в прессовании и сжатии при высокой температуре (1200—2000°С) металлических порошков. Са- 203 мораспространяющийся синтез происходит гораздо проще: он основан на горении одного металла в другом или горении металла в азоте, углероде, кремнии и т.п. Давно известно, что процесс горения представляет собой соединение кислорода с горючим веществом, поэтому горение — это реакция окисления горючего вещества. При этом происходит перемещение электронов от атомов окисляемого вещества к атомам кислорода. С этой точки зрения горение возможно не только в кислороде, но и в других окислителях. На этом выводе и основан самораспространяющийся высокотемпературный синтез — тепловой процесс горения в твердых телах. Он представляет собой, например, горение порошка титана в порошке бора, или порошка циркония в порошке кремния. В результате такого синтеза получаются сотни тугоплавких соединений самого высокого качества. Очень важно, что данная технология не требует громоздких процессов, отличается высокой технологичностью и легко поддается автоматизации. Еще одна область развития учения о химических процессах — химия высоких и сверхвысоких давлений. Химические превращения веществ при давлениях выше 100 атм относятся к химии высоких давлений, а при давлениях выше 1000 атм — к химии сверхвысоких давлений. Высокие давления в химии используются с начала XX в. — аммиачное производство осуществлялось при давлении 300 атм и температуре 600°С. Но в последнее время используются установки, в которых достигается давление 5000 атм, а испытания проводятся при давлении 600 000 атм, которое достигается за счет ударной волны при взрыве в течение миллионной доли секунды. При ядерных взрывах возникают еще более высокие давления. При высоком давлении сближаются и деформируются электронные оболочки атомов, что ведет к повышению реакционной способности веществ. При давлении 102—103 атм исчезает различие между жидкой и газовой фазами, а при 103—105 атм — между твердой и жидкой фазами. При высоком давлении сильно меняются физические и химические свойства веществ. Например, при давлении 20 000 атм металл становится эластичным, как каучук. Обычная вода при высоких температуре и давлении становится химически активной. С повышением давления многие вещества переходят в металлическое состояние. Так, в 1973 г. ученые наблюдали металлический водород при давлении 2,8 млн. атм. Одним из важнейших достижений химии сверхвысоких давлений стал синтез алмазов. Он идет при давлении 50 000 атм и температуре 2000°С. При этом графит кристаллизуется в алмазы. Также алмазы можно синтезировать и с применением ударных волн. В последнее время ежегодно производятся тонны синтетических ал- 204 мазов, которые лишь незначительно отличаются от природных по своим свойствам. Получающиеся алмазы используются для промышленных целей — в режущем и буровом оборудовании. Удалось синтезировать черные алмазы — карбонадо, которые тверже природных алмазов. Они используются для обработки самих алмазов. В настоящее время налажено промышленное производство не только искусственных алмазов, но и других драгоценных камней — корунда (красного рубина), изумруда и др. При высоких давлениях синтезируют и другие материалы, отличающиеся высокой термостойкостью. Так, из нитрида бора при давлении 100 000 атм и температуре 2000°С синтезирован боразон — материал, пригодный для сверления и шлифования деталей из чрезвычайно твердых материалов при очень высоких температурах. 8.5. Четвертый уровень химического знания. Эволюционная химияВ 60—70-е гг. XX в. появился четвертый способ решения основной проблемы химии, открывающий пути для использования в производстве материалов самых высокоорганизованных химических систем, какие только возможны в настоящее время. В основе этого способа лежит принцип использования в процессах получения целевых продуктов таких условий, которые приводят к самосовершенствованию катализаторов химических реакций, т.е. к самоорганизации химических систем. В сущности, речь идет об использовании химического опыта живой природы. Химический реактор предстает как некое подобие живой системы, для которой характерны саморазвитие и определенные черты поведения. Так появилась эволюционная химия как высший уровень развития химического знания. Под эволюционными процессами в химии понимают процессы самопроизвольного (без участия человека) синтеза новых химических соединений, являющихся более сложными и высокоорганизованными продуктами по сравнению с исходными веществами. Поэтому эволюционную химию заслуженно считают предбиоло-гией, наукой о самоорганизации и саморазвитии химических систем. До последней трети XX в. об эволюционной химии ничего не было известно. В отличие от биологов, которые вынуждены были использовать эволюционную теорию Дарвина для объяснения происхождения многочисленных видов растений и животных, вопрос о происхождении вещества для химиков не представлял интереса, поскольку получение любого нового химического индивида всегда 205 было делом рук и разума человека. Молекулы новых химических соединний конструировались по законам структурной химии из атомов и атомных групп, как здание из кирпичей. Живые же организмы из блоков собрать было нельзя. Но изучение и освоение опыта живой природы было давней мечтой ученых. Первые шаги на этом пути были сделаны еще И. Берцелиусом, который установил, что в основе функционирования живого организма лежит биокатализ. Затем исследования в этом направлении велись Ю. Либихом, П. Бертло и, наконец, Н.Н. Семеновым. Работы этих ученых способствовали укреплению связи химии с биологией. Постепенное развитие науки в XIX в., приведшее к раскрытию структуры атома и детальному познанию строения и состава клетки, открыло перед химиками и биологами практические возможности совместной работы над химическими проблемами учения о клетке. На повестке дня стояло изучение характера химических процессов в живых тканях, обусловленность биологических функций химическими реакциями. Как было установлено учеными в XIX в., основой исключительной эффективности биологических процессов является биокатализ. Поэтому химики ставят своей целью создать новую химию, основанную на каталитическом опыте живой природы. Они стремятся к новым принципам управления химическими процессами, в которых будет применяться синтез себе подобных молекул, по принципу ферментов будут созданы катализаторы с таким разнообразием качеств, которые далеко превзойдут существующие в нашей промышленности до сих пор. Несмотря на то, что ферменты обладают общими свойствами, присущими всем катализаторам, тем не менее, они не тождественны последним, поскольку функционируют в рамках живых систем. Поэтому все попытки использовать опыт живой природы для ускорения химических процессов в неорганическом мире сталкиваются с серьезными ограничениями. Пока речь может идти только о моделировании некоторых функций ферментов и использовании этих моделей для теоретического анализа деятельности живых систем. Также возможно частичное практическое применение выделенных ферментов для ускорения некоторых химических реакций. Для этого нужно изучить весь каталитический опыт живой природы, в том числе и опыт формирования самого фермента, клетки и даже организма. На этой основе и возникла эволюционная химия как новая наука, пролагающая пути принципиально новой химической технологии, способной стать аналогом живых систем. Таким образом, возникновению эволюционной химии способствовали исследования в области моделирования биокатализаторов-ферментов. Для освоения опыта живой природы и реализации по- 206 лученных знаний в промышленности химики наметили ряд перспективных путей. Во-первых, химики ведут исследования в области металлоком-плексного катализа, который обогащается приемами, используемыми живыми организмами в реакциях с участием ферментов. Во-вторых, ученые пытаются моделировать биокатализаторы. Уже удалось создать модели многих ферментов, которые извлекаются из живой клетки и используются в химических реакциях. Но проблема осложняется тем, что ферменты, устойчивые внутри живой клетки, вне клетки быстро разрушаются. В-третьих, развивается химия иммобилизованных систем. При этом ферменты, выделенные из живого организма, закрепляются на твердой поверхности путем адсорбции. Пионером в этой области выступил русских химик И.В. Березин. Благодаря его исследованиям биокатализаторы стали стабильными, устойчивыми в химических реакциях, появилась возможность их многократного использования. В-четвертых, глобальной целью современной химии является решение самой широкой задачи — освоение и использование всего опыта живой природы. Это позволит химикам создать полные аналоги живых систем, в которых будут синтезироваться самые разнообразные вещества. Таким образом, человечество получит в свое распоряжение принципиально новые химические технологии. Зарождение эволюционной химии произошло в 1960-е гг., когда были открыты случаи самосовершенствования катализаторов в ходе реакции, тогда как обычно в процессе работы они дезактивировались, ухудшались и выбрасывались. Так химики обратили внимание на процессы самоорганизации в химических системах, подняв тем самым химию на качественно новый уровень. При этом впервые было обращено внимание на существование в природе химических систем разной степени сложности, а также на процесс перехода от химических систем к биологическим. Изучение процессов самоорганизации в химии привело к формированию двух подходов к анализу предбиологических систем: субстратного и функционального. Субстратный подход к проблеме биогенезаВ рамках субстратного подхода было отмечено, что при переходе к простейшим формам жизни шел особый дифференцированный отбор лишь таких химических элементов и их соединений, которые являются основным строительным материалом для образования биологических систем. Эти элементы в химии получили название органогенов. Результатами такого подхода стала информация об отборе химических элементов и структур, который оказался подобным биологической эволюции. В настоящее время наукой открыто 110 хи- 207 мических элементов. Большинство из них попадает в живые организмы и участвует в их жизнедеятельности. Однако основу жизнедеятельности обеспечивают только шесть химических элементов-органогенов — углерод, водород, кислород, азот, фосфор и сера. Их суммарная весовая доля в структуре живого организма составляет 97,4%. За ними следуют 12 элементов, которые принимают участие в построении многих физиологически важных компонентов биологических систем (натрий, калий, кальций, магний, алюминий, железо, кремний, хлор, медь, цинк, кобальт, никель). Их весовая доля в организме составляет 1,6%. Кроме того, существует еще 20 элементов, участвующих в построении и функционировании отдельных узкоспецифических биосистем, весовая доля которых составляет около 1%. Все остальные элементы в построении биосистем практически не участвуют. Общая химическая картина мира также весьма убедительно свидетельствует об отборе химических соединений. В настоящее время химической науке известно около 8 млн. химических соединений. Из них подавляющее большинство (96%) составляют органические соединения, которые образованы на основе все тех же 6—18 элементов. А из остальных 90 химических элементов природа создала всего лишь около 300 тысяч неорганических соединений. Из миллионов органических соединений в построении живого участвуют лишь несколько сотен. Из 100 известных аминокислот в состав белков входит только 20. Лишь по четыре нуклеотида ДНК и РНК лежат в основе всех сложных полимерных нуклеиновых кислот, ответственных за наследственность и регуляцию белкового синтеза в любых живых организмах. Химикам важно понять, каким образом из минимума химических элементов и химических соединений образовались сложнейшие биосистемы. Без этого ученые не смогут приспособить к своим нуждам простые химические системы и получить из них более сложные соединения. Можно предположить, что определяющими факторами в отборе химических элементов при формировании органических систем, а тем более биосистем, выступают условия соответствия этих элементов определенным требованиям:
Данным условиям отвечает углерод — органоген номер один. Он, как никакой другой элемент, способен вмещать и удерживать внутри себя самые редкие химические противоположности, реали-зовывать их единство, выступать в качестве носителя внутреннего противоречия. 208 Азот, фосфор и сера как органогены, а также железо и магний, составляющие активные центры ферментов, также лабильны. Кислород и водород свойством лабильности обладают в меньшей мере, поэтому являются носителями окислительных и восстановительных процессов. Сегодня также ясно, что в ходе эволюции отбирались те структуры, которые способствовали резкому повышению активности и селективности действия каталитических групп. Есть уже и некоторые выводы:
Функциональный подход в эволюционной химииВ рамках функционального подхода также изучается роль катализа и выявляются законы, которым подчиняются процессы самоорганизации химических систем. Было отмечено, что ведущую роль на предбиологической стадии эволюции играл катализ. Роль каталитических процессов усиливалась по мере усложнения состава и структуры химических систем. Именно на этом основании некоторые ученые напрямую стали связывать химическую эволюцию с самоорганизацией и саморазвитием каталитических систем. Иными словами, такая эволюция если не целиком, то в значительной мере связана с процессами самоорганизации каталитических систем. Исходя из этого профессор МГУ А.П. Руденко выдвинул теорию саморазвития открытых каталитических систем. Очень скоро она была преобразована в общую теорию химической эволюции и биогенеза. В ней решены вопросы о движущих силах и механизмах эволюционного процесса, т.е. о законах химической эволюции, отборе элементов и структур и их причинной обусловленности, о высоте химической организации и иерархии химических систем как следствии эволюции. Сущность данной теории состоит в том, что химическая эволюция представляет собой саморазвитие каталитических систем, а сле- 209 довательно, эволюционирующим веществом являются катализаторы, а не молекулы. Выше мы упоминали, что при катализе идет реакция химического взаимодействия катализатора и реагентов с образованием промежуточных комплексов со свойствами переходного состояния. Именно такой промежуточный каталитический комплекс Руденко назвал элементарной каталитической системой. Если в ходе реакции идет постоянный приток новых реактивов извне и отвод готовой продукции, а также выполняются некоторые дополнительные условия, то реакция может идти неограниченно долго, находясь на одном и том же стационарном уровне. Такие многократно возобновляемые комплексы являются элементарными открытыми каталитическими системами. Саморазвитие, самоорганизация и самоусложнение каталитических систем происходит за счет постоянного притока трансформируемой энергии. А так как основным источником энергии является базисная реакция, то максимальное эволюционное преимущество получают каталитические системы, развивающиеся на базе экзотермических реакций. Таким образом, базисная реакция — не только источник энергии, но и орудие отбора наиболее прогрессивных эволюционных изменений катализаторов. Тем самым Руденко сформулировал основной закон химической эволюции, согласно которому с наибольшей скоростью и вероятностью реализуются те пути эволюционных изменений катализаторов, которые связаны с ростом их абсолютной каталитической активности. При этом по параметру абсолютной каталитической активности складываются механизмы конкуренции и естественного отбора. Возникает явление автокатализа, при котором продукты реакции выступают как катализаторы, ускоряющие дальнейшее протекание реакции. При этом реакция становится саморазвивающейся, и элементарная открытая каталитическая система подходит к первому пределу в своем развитии, когда рост скорости базисной реакции начинает ограничиваться постоянной температурой системы. Тогда некоторые элементарные каталитические центры становятся способными осуществлять не один, а несколько циклов базисной реакции. На следующем этапе развития элементарной каталитической системы скорость реакции начинает ограничиваться концентрацией реагирующих веществ. При этом система подходит ко второму пределу в своем развитии, который преодолевается с помощью пространственного дублирования каталитических систем, их разъединения и дальнейшего самостоятельного существования. А самовоспроизведение (точное пространственное дублирование) является признаком не химической, а биологической эволюции. Именно так с матричных молекул ДНК считывается наследственная информация и на этой основе строится новая молекула. Таким образом, второй кинетический предел саморазвития элементарных открытых 210 каталитических систем является пределом добиологической химической эволюции. После этого возможности добиологической эволюции, проходящей по законам химии, исчерпываются, и начинается эволюция биологическая. Практическим следствием теории саморазвития открытых каталитических систем является так называемая нестационарная кинетика, которая занимается теорией управления нестационарными процессами — реакциями с меняющимися условиями. Сегодня исследователи приходят к выводу, что стационарный режим, надежная стабилизация которого казалась залогом высокой эффективности промышленного процесса, является лишь частным случаем нестационарного режима. При этом было обнаружено множество нестационарных режимов, способствующих интенсификации реакции. Таким образом, рассмотренные концепции химии позволяют говорить о существовании химической картины мира, т.е. такого взгляда на природу с точки зрения химии, в котором определяются место и роль химических объектов и процессов в реальном природном многообразии. Ее содержанием является:
Литература для самостоятельного изучения
. Комментарии (3) |
|