Библиотека

Теология

Конфессии

Иностранные языки

Другие проекты







Ваш комментарий о книге

Найдыш В. Концепции современного естествознания: Учебник

ОГЛАВЛЕНИЕ

13. МИР ЖИВОГО

Жизнь на Земле чрезвычайно многообразна. Она представлена ядерными и доядерными одно- и многоклеточными существами. Богатейший мир многоклеточных существ представлен тремя царствами — грибами, растениями и животными. Каждое из них в свою очередь представлено разнообразными типами, классами, отрядами, семействами, родами, видами, популяциями и особями. Все эти таксоны являются результатом исторического развития мира живого, его эволюции. Но мир живого имеет еще и структурно-инвариантный аспект: живое обладает молекулярной, клеточной, тканевой и иной структурностью.

13.1. Особенности живых систем

13.1.1. Существенные черты живых организмов.

По признаку клеточного строения все живые организмы делятся на доклеточные и клеточные. Подавляющее большинство ныне живущих организмов состоит из клеток. Доклеточные формы жизни — вирусы (открытые в 1892 г. русским микробиологом Д.И. Ивановским) и фаги. Вирусы занимают промежуточное место между живым и неживым. Они состоят из белковых молекул и нуклеиновых кислот (либо ДНК, либо РНК); не имеют собственного обмена веществ; вне организма или клетки они не проявляют признаков жизни. Вирусы способны проникать в определенные живые клетки и размножаются только внутри этих клеток. Это позволяет называть их внутриклеточными паразитами на генетическом уровне. Вирусы поражают все группы живых организмов. В настоящее время описано свыше 500 вирусов, поражающих теплокровных позвоночных. Иногда вирусы выделяют в особое царство живой природы.

Все клеточные подразделяются на четыре царства: безъядерные (бактерии, цианеи), растения (багрянки, настоящие водоросли, высшие растения), грибы (низшие и высшие) и, наконец, животные (простейшие и многоклеточные). Безъядерные, видимо, относятся к самым древним формам жизни на Земле. Число видов ныне существующих растений превышает 500 000, из них

475

цветковых примерно 300 000. Царство животных не менее разнообразно, чем царство растений, а по числу видов животные превосходят растения: описано около 1 200 000 видов животных (из них около 900 000 видов — членистоногих, 110 000 — моллюсков, 42 000 — хордовых животных). Грибов — около 100 000 видов.

Все эти виды объединяются во множество сообществ разной сложности, включающих как особей одного вида, так и особей, принадлежащих разным видам.

Всем живым организмам свойственны следующие существенные черты: обмен веществ, подвижность, раздражимость, рост, размножение, приспособляемость. Каждое из этих свойств порознь может встречаться и в неживой природе, поэтому само по себе не может рассматриваться как специфическое для живого. Однако все вместе они никогда не характеризуют объекты неживой природы, и свойственны только миру живого, и в своем единстве являются критериями, отличающими живое от неживого.

Живой организм — это множественная система химических процессов, в ходе которых происходит постоянное разрушение молекулярных органических структур и их воспроизводство. Современная молекулярная биология показала поразительное единство живой материи на всех уровнях ее развития — от простейшего микроорганизма до высшего млекопитающего. Выяснилось, что существуют только два основных класса молекул, взаимодействие которых определяет то, что мы называем жизнью, — нуклеиновые кислоты и белки. Взятые вместе, они образуют основу живого.

Воспроизводство живого организма осуществляется за счет синтеза белков в клетках организма при помощи нуклеиновых кислот — ДНК и РНК (рибонуклеиновая кислота). Белки — это очень сложные макромолекулы, структурными элементами которых являются аминокислоты. Структура белка задается последовательностью образующих его аминокислот, причем из 100 известных в органической химии аминокислот в образовании белков всех организмов используются только 20. До сих пор так и не ясно, почему именно эта двадцатка аминокислот, а не какие-либо другие, синтезирует белки нашего органического мира.

Нуклеиновые кислоты обладают более простой структурой. Они образуют длинные полимерные цепи, звеньями которых выступают нуклеотиды — соединения азотистого основания, сахара и остатка фосфорной кислоты. В ДНК основаниями служат аденин, гуанин, цитозин и тимин. Эти азотистые основания присоединяются к сахару по одному в разной последовательности.

476

Сущность живого наиболее концентрированно выражена в таком замечательном явлении, как конвариантная редупликация — «самовоспроизведение с изменениями», осуществляемое на основе матричного принципа синтеза макромолекул. В его основе — уникальная способность к идентичному самовоспроизведению основных управляющих систем (ДНК, хромосом и генов) благодаря их относительно высокой стабильности (явление наследственности). Все основные свойства живого немыслимы без наследственной передачи свойств в ряду поколений.

Но при самовоспроизведении управляющих систем в живых организмах происходит не абсолютное повторение, а воспроизведение с внесением изменений, что также определяется свойствами молекул ДНК. Абсолютной стабильности в природе не бывает. Любая достаточно сложная молекулярная структура претерпевает структурные изменения в результате движения атомов и молекул. Если эти изменения не ведут к летальному исходу, они будут передаваться по наследству в результате самовоспроизведения по матричному принципу. Конвариантная редупликация означает возможность передачи по наследству мутаций — дискретных отклонений от исходного состояния.

13.1.2. Мир живого как система систем.

В основе современной биологической картины мира лежит представление о том, что мир живого — это грандиозная система высокорганизованных систем. Любая система (и в неорганической, и в органической природе) состоит из совокупности элементов (компонентов) и связей между ними (структуры), которые объединяют данную совокупность элементов в единое целое. Биологическим системам свойственны свои специфические элементы и особенные типы связей между ними. Сначала об элементах и компонентах биологических систем. В них выражена дискретная составляющая живого. Живые объекты, системы в природе относительно обособлены друг от друга (особи, популяции, виды). Любая особь многоклеточного животного состоит из клеток, а любая клетка и одноклеточные существа — из определенных органелл. Органеллы образуются дискретными, обычно высокомолекулярными, органическими веществами. Биологические системы предельно индивидуализированы. Среди живых систем нет двух одинаковых особей, популяций, видов и др. Это способствует их адаптации к внешней среде.

477

Вместе с тем сложная организация немыслима без целостности. Целостность системы означает несводимость свойств системы к сумме свойств ее элементов. Целостность порождается структурой системы, типом связей между ее элементами. Биологические системы отличаются высоким уровнем целостности.

Живые системы — открытые системы, постоянно обменивающиеся веществом, энергией и информацией со средой. Обмен веществом, энергией и информацией происходит и между частями (подсистемами) системы. Для живых систем характерны отрицательная энтропия (увеличение упорядоченности), способность к самоорганизации.

Динамические процессы в биологических системах, их самоорганизация, устойчивость и переходы из стационарного состояния в нестационарное обеспечиваются различными механизмами саморегуляции. Саморегуляция — это внутреннее свойство биологических систем автоматически поддерживать на некотором необходимом уровне параметры протекающих в них процессов (физиологических и др.). Системы органического мира организованы иерархически и представлены большим количеством уровней структурно-функциональной организации. На каждом уровне складываются свои специфические механизмы саморегуляции, основанные, как правило, на принципе обратной связи (отрицательной или положительной), когда отклонение некоторого параметра от необходимого уровня приводит к «включению» функций, которые ликвидируют дисбаланс, возвращая данный параметр к нужному уровню. В случае отрицательной обратной связи знак изменения противоположен знаку первоначального отклонения, а при положительной обратной связи знак изменения совпадает со знаком отклонения; при этом система выходит из одного стационарного состояния и переходит в другое. Любая биологическая система способна пребывать в различных стационарных состояниях. Это позволяет ей, с одной стороны, функционировать в определенных отношениях независимо от среды, а с другой — адаптироваться к среде при соответствующих условиях.

Кроме стационарных, биологические системы имеют и автоколебательные состояния, когда значения параметров колеблются во времени с определенной амплитудой. Такие состояния являются основой периодических биологических процессов, биологических ритмов, биологических часов и др.

478

13.2. Основные уровни организации живого

Системно-структурные уровни организации многообразных форм живого достаточно многочисленны: молекулярный, субклеточный, клеточный, органотканевый, организменный, популяционный, видовой, биоценотический, биогеоценотический, биосферный. Могут быть определены и другие уровни. Но во всем многообразии уровней выделяются некоторые основные.

Критерием выделения основных уровней выступают специфические дискретные структуры и фундаментальные биологические взаимодействия. На основании этих критериев достаточно четко выделяются следующие уровни организации живого: молекулярно-генетический, организменный, популяционно-видовой, биогеоценотический.

13.2.1. Молекулярно-генетический уровень.

Знание закономерностей этого уровня организации живого — необходимая предпосылка ясного понимания жизненных явлений, происходящих на всех остальных уровнях организации жизни. На данном уровне организации жизни элементарной единицей являются гены, несущие в себе коды наследственной информации. В XX в. развитие хромосомной теории наследственности, анализ мутационного процесса, изучение строения хромосом, фагов и вирусов, развитие молекулярной биологии, биохимии позволили раскрыть основные черты организации элементарных генетических структур и связанных с ними явлений.

Выяснено, что основные структуры на этом уровне представлены молекулами ДНК, дифференцированными по длине на элементы кода — триплеты азотистых оснований, образующих гены. Основные свойства генов: способность их к конвариантной редупликации, локальным структурным изменениям (мутациям), способность передавать хранящуюся в них информацию внутриклеточным управляющим системам.

479

Молекула ДНК представляет собой две спаренные, закрученные в спирали нити, каждая из которых соединяется с другой водородными связями. Конвариантная редупликация происходит по матричному принципу: сначала разрываются водородные связи двойной спирали ДНК с участием фермента ДНК-поли-меразы; затем каждая нить на своей поверхности строит соответствующую нить; после этого новые нити комплементарно соединяются между собой. Пиримидиновые и пуриновые основания комплементарных нитей «сшиваются» между собой ДНК-поли-меразой. Этот процесс осуществляется очень быстро. Так, на самосборку ДНК примерно из 40 тыс. пар нуклеотидов требуется всего 100 с.

В синтезе белков важная роль принадлежит также РНК. Синтез белка происходит в особых областях клетки — рибосомах (иногда их образно называют «фабрики белка»). Существуют по крайней мере три типа РНК: высокомолекулярная, локализующаяся в рибосомах; информационная, образующаяся в ядре клетки; транспортная.

В ядре генетический код переносится с молекул ДНК на молекулу информационной РНК. Генетическая информация о последовательности и характере синтеза белка переносится из ядра молекулами информационной РНК в цитоплазму к рибосомам и там участвует в синтезе белка. Перенос и присоединение отдельных аминокислот к месту синтеза осуществляются транспортной РНК. Белок, содержащий тысячи аминокислот, в живой клетке синтезируется за 5—6 мин.

Таким образом, как при конвариантной редупликации, так и при внутриклеточной передаче информации используется единый матричный принцип: исходные молекулы ДНК и РНК являются матрицами, рядом с которыми строятся соответствующие макромолекулы. Молекулы ДНК играют роль кода, который «зашифровывает» все синтезы белковых молекул в клетках организма. Характерно, что все биологические организмы на Земле используют одинаковый тип генетического кода. Редупликация, основанная на матричном копировании, делает возможным сохранение не только генетической нормы, но и отклонений от нее — мутаций (основа процесса эволюции).

Центральная проблема современной молекулярной биологии — изучение строения и функций органических макромолекул, прежде всего иерархии их структурной организации, которую представляют следующим образом: первичная структура (последовательность мономеров в биополимерах), вторичная структура (биополимерная

480

спираль), третичная структура (организация молекул белка), четвертичная структура (макромолекулярные комплексы молекул белков). В настоящее время молекулярной биологией успешно дешифруется заложенный в структуре нуклеиновых кислот код, служащий матрицей при синтезе специфических белковых структур.

13.2.2. Организменный уровень.

Следующий, более сложный, комплексный уровень организации жизни на Земле — организменный. Он связан с жизнедеятельностью отдельных биологических особей, дискретных индивидов. Индивид, особь — неделимая и целостная единица жизни на Земле.

В многообразной земной органической жизни особи имеют различное морфологическое содержание: одноклеточные, состоящие из ядра, цитоплазмы, множества органелл и мембран, макромолекул и т.д. Здесь и многоклеточная особь, образованная из миллионов и миллиардов клеток. Сложность многоклеточных особей неизмеримо выше сложности одноклеточных. Но и одноклеточная, и многоклеточная особи обладают системной организацией и выступают как единое целое.

Причем важно то, что характеристика особи не может быть исчерпана рассмотрением физико-химических свойств макромолекул, входящих в его состав. Невозможно разделить особь на части без потери «индивидуальности». Это позволяет назвать организменный уровень особым уровнем организации жизни. Таким образом, на организменном уровне единицей жизни служит особь — с момента ее рождения до смерти.

Развитие особи, последовательность морфологических, физиологических и биохимических преобразований, претерпеваемых организмом от образования зародышевой клетки до смерти, составляет содержание процесса онтогенеза. Онтогенез — это рост, перемещение отдельных структур, дифференциация и усложнение интеграции организма. По сути, онтогенез — это процесс реализации наследственной информации, закодированной в управляющих структурах зародышевой клетки, а также испытания, проверки согласованности и работы управляющих систем во времени и пространстве, присособления особи к среде и др.

481

Причины развития организма в онтогенезе являются предметом обстоятельного и интенсивного изучения эмбриологами, биохимиками, генетиками. Многие отрасли биологии изучают процессы и явления, происходящие в особи, согласованное функционирование ее органов и систем, механизм их работы, взаимоотношения органов, поведение организмов, приспособительные изменения и т.п. Пока не создана общая теория онтогенеза, не ясны все причины и факторы, определяющие строгую организованность этого процесса. Имеющиеся результаты позволяют понять только отдельные процессы, обеспечивающие индивидуальное развитие организма. Прежде всего это касается изучения дифференциации, т.е. образования разнообразных, специализированных для выполнения определенных функций частей организма. Онтогенез определяется деятельностью механизмов саморегуляции, согласованно реализующих наследственные свойства и работу управляющих систем в пределах особи.

Вместе с тем до сих пор не известно, почему в онтогенезе строго определенные процессы происходят в должное время и в должном месте. Одна из важнейших проблем современной биологии — выявление закономерностей регуляции внутриклеточных процессов, функций клетки и механизма включения генов в процессе клеточной дифференцировки, ведь в процессе развития каждой клетки в ней работают только те гены, функция которых необходима для развития данной ткани (органа).

13.2.3. Популяционно-видовой уровень.

Особи в природе не абсолютно изолированы друг от друга, а объединены более высоким рангом биологической организации. Это популяционно-видовой уровень. Он возникает там и тогда, где и когда происходит объединение особей в популяции, а популяций в виды. Популяции характеризуются появлением новых свойств и особенностей в живой природе, отличных от свойств молекулярно-генетического и онтогенетического уровней.

Хотя популяции состоят из множества особей, они целостны. Их целостность в отличие от целостности молекулярно-генетического и онтогенетического уровней обеспечивается взаимодействием особей в популяциях и воссоздается через обмен генетическим материалом в процессе полового размножения. Виды — это системы популяций. Популяции и виды как надындивидуальные образования способны к существованию в течение длительного времени и к самостоятельному эволюционному развитию.

482

Популяции выступают как элементарные, далее неразложимые эволюционные единицы, представляющие собой генетически открытые системы, так как особи из разных популяций иногда скрещиваются и популяции обмениваются генетической информацией. На популяционно-видовом уровне особую роль играет свободное скрещивание между особями внутри популяции и вида. Виды являются генетически закрытыми системами, поскольку в природе скрещивание особей разных видов в подавляющем большинстве случаев не ведет к появлению плодовитого потомства.

Если популяция — основная элементарная структура на популяционно-видовом уровне, то элементарное явление на этом уровне — изменение генотипического состава популяции, а элементарный материал — мутации. В синтетической теории эволюции выделены элементарные факторы, действующие на этом уровне: мутационный процесс, популяционные волны, изоляция и естественный отбор (см. 12.2.2). Каждый из этих факторов может оказать определенное воздействие на популяцию и вызвать изменения в генотипическом составе популяции.

Популяции и виды, а также протекающий в популяциях процесс эволюции всегда существуют в определенной природной среде, конкретной системе, которая включает в себя биотические и абиотические факторы. Такая система получила название «биогеоценоз» — элементарная единица следующего (биогеоценотического) уровня организации жизни на Земле.

13.2.4. Биогеоценотический уровень.

Популяции разных видов взаимодействуют между собой. В ходе взаимодействия они объединяются в сложные системы — биоценозы. Биоценоз — совокупность растений, животных, грибов и микроорганизмов, населяющих участок среды с более или менее однородными условиями существования и характеризующихся определенными взаимосвязями между собой. Совокупность растений, входящих в биоценоз, называют фитоценозом, а совокупность животных — зооценозом. Компоненты, образующие биоценоз, взаимозависимы. Изменения, касающиеся только одного вида, могут сказаться на всем биоценозе и даже вызвать его распад.

483

Высокоорганизованные организмы для своего существования нуждаются в более простых организмах. Поэтому каждый биоценоз неизменно содержит как простые, так и сложные компоненты. Биоценоз только из бактерий или деревьев никогда не сможет существовать, как нельзя представить биоценоз, населенный лишь позвоночными или млекопитающими. Таким образом, низшие организмы в биоценозе — это не какой-то случайный пережиток прошлых эпох, а необходимая составная часть биоценоза.

Биоценозы характеризуются биомассой, продукцией и структурой (пространственной, видовой, пищевой). В ходе развития биоценоза растет его биомасса, усложняется структура, увеличивается продукция. Только знание всех закономерностей биоценоза позволяет рационально использовать продукцию биоценозов без их необратимого разрушения.

Биоценозы входят в качестве составных частей в еще более сложные системы (сообщества) — биогеоценозы. Биогеоценоз (экосистема, экологическая система) — взаимообусловленный комплекс живых и абиотических компонентов, связанных между собой обменом веществ и энергией. Абиотическими компонентами биогеоценозов являются атмосфера, солнечная энергия, почва, вода, химические компоненты, включенные в биотический круговорот. Биогеоценоз — одна из наиболее сложных природных систем, продукт совместного исторического развития в относительно однородной абиотической среде многих видов растений и животных, в ходе которого все компоненты приспосабливались друг к другу.

Биогеоценоз — это целостная система. Виды в биогеоценозе действуют друг на друга не только по принципу прямой, но и обратной связи (в том числе посредством изменения ими абиотических условий). Выпадание одного или нескольких компонентов биогеоценоза может привести к разрушению его целостности, что часто ведет к необратимому нарушению равновесия и гибели биогеоценоза как системы. В целом жизнь биогеоценоза регулируется силами, действующими внутри самой системы, т.е. можно говорить о его саморегуляции. В то же время биогеоценоз представляет собой незамкнутую систему, имеющую каналы вещества и энергии, связывающие соседние биогеоценозы. Обмен веществом и энергией между ними может осуществляться в разных формах: газообразной, жидкой и твердой, а также в форме миграции животных.

484

Уравновешенная, взаимосвязанная и стойкая во времени система — биогеоценоз является результатом длительной и глубокой адаптации составных компонентов. Устойчивость его пропорциональна многообразию его компонентов: чем многообразнее биогеоценоз, тем он, как правило, устойчивее во времени и пространстве. Например, биогеоценозы, представленные тропическими лесами, гораздо устойчивее биогеоценозов в зоне умеренного или арктического поясов, так как они состоят из гораздо большего множества видов растений и животных.

Первичной биотической основой для сложения биогеоценозов в данных абиотических условиях (почва, вода и др.) служат автотрофы — зеленые растения и микроорганизмы, хемосинтетики, производящие органическое вещество. Автотрофные растения и микроорганизмы представляют жизненную среду для гетеротрофов — животных, грибов, большинства бактерий, вирусов. Поэтому границы биогеоценозов чаще всего совпадают с границами фитоценозов [1]. Но и животные впоследствии начинают играть важную роль в жизни растений: они осуществляют опыление, распространение плодов, участвуют в круговороте веществ и т.д. Так складывается биогеоценотический комплекс, который может существовать веками.

1 Авготрофы, прежде всего фотосинтетики, играют поистине космическую роль на Земле. Фиксируя энергию солнечного света в продуктах фотосинтеза, растения выполняют роль космического очага энергии на Земле. Ежегодно растения образуют до 100 млрд т органических веществ и фиксируют до 1016 кДж энергии солнечной радиации. При этом растения усваивают из атмосферы до 170 млрд т углекислого газа и разлагаются до 130 млрд т воды, выделяя до 115 млрд т свободного кислорода. Таким образом, жизнь на Земле полностью зависит от фотосинтеза. Учение о фотосинтезе было создано нашим соотечественником — великим ботаником К.А. Тимирязевым.

Вся совокупность связанных между собой круговоротом веществ и энергии биогеоценозов на поверхности нашей планеты образуют мощную систему биосферы Земли. Верхняя граница жизни в атмосфере достигает примерно 25—30 км, нижняя граница в земной коре сосредоточена в самом верхнем ее слое — до 10 м. (Отдельные виды микроорганизмов встречаются в нефтеносных слоях на глубине до 3 км.) В гидросфере (океаны и моря) зона, богатая живыми организмами, занимает слой воды до 200 м, но некоторые организмы обнаружены и на максимальной глубине глубоководных океанских впадин — до 11 км. Таким образом, «пленка жизни» на Земле достаточно тонкая — всего около 40 км. Она ограничена интенсивным потоком губительных ультрафиолетовых лучей за пределами озонового слоя в тропосфере и высокой температурой земных недр (на глубине 3 км она может достигать 100 °С).

485

Благодаря деятельности растений биосфера стала аккумулятором солнечной энергии. Живые организмы представляют собой самую важную биохимическую силу, которая преобразует земную кору. Более 90% всего живого вещества приходится на наземную растительность, которая в свою очередь составляет 97% биомассы суши. А общая масса живого вещества в биосфере оценивается в 2 1018г (в пересчете на сухое вещество). Масса же биосферы в целом составляет 3 1024 г.

Масштабы деятельности живых организмов поистине грандиозны. О них свидетельствуют тысячеметровые толщи известняка, огромные залежи каменного угля, мощные биогенные породы и т.п. Живые организмы способны усваивать из среды обитания различные химические элементы: железо (железобактерии), кальций (многие моллюски и т.д.), кремний (водоросли пр.), йод (губки), ванадий (асцидии) и др. Именно живое вещество определило состав атмосферы, осадочных пород, почвы, гидросферы.

Между неорганической и органической материей на Земле существует постоянный кругооборот вещества и энергии, в котором проявляется закон сохранения массы и энергии: каждое живое существо благодаря следующим цепям питания (особенно бактериям) после окончания жизненного цикла возвращает природе все, что взяло от лее в течение жизни. Именно кругооборот вещества и энергии обеспечивает продолжительность существования жизни, потому что иначе на Земле запасы необходимых элементов были бы очень быстро исчерпаны. Рассматривая биосферу Земли как единую экологическую систему, можно убедиться, что живое вещество Земли существенно не уменьшается и не увеличивается в массе, а только переходит из одного состояния в другое.

В современную эпоху преобразующая деятельность человека по своей мощности сравнилась с геологическими процессами. На Земле практически не осталось таких мест, где бы не сказывалось влияние практической деятельности человека. При этом использование природных ресурсов обычно происходит без учета закономерностей функционирования биосферы. Это влечет за собой загрязнение среды обитания, уничтожение лесов, эрозию почв, вымирание видов животных и растений и др. Под угрозой оказывается развитие биосферы — человечество вступает в период глобального экологического кризиса. Выход из него возможен только на пути изучения законов биосферы и строгого следования им в деятельности человека.

486

Раздел биологии, изучающий экологические системы (биоценозы, биогеоценозы) называется биогеоценология. Основателем ее был выдающийся отечественный ученый В.Н. Сукачев, учение о биосфере создал наш великий мыслитель В.И. Вернадский.

13.3. Возникновение жизни на Земле

13.3.1. Развитие представлений о происхождении жизни.

Происхождение жизни — одна из трех важнейших мировоззренческих проблем наряду с проблемой происхождения Вселенной и проблемой происхождения человека.

Попытки понять, как возникла и развивалась жизнь на Земле, предпринимались еще в глубокой древности. В античности сложились два противоположных подхода к решению этой проблемы. Религиозно-идеалистический исходил из того, что возникновение жизни на Земле не могло осуществиться естественным, объективным, закономерным образом; жизнь является следствием божественного творческого акта (креационизм), поэтому всем существам свойственна особая, независимая от материального мира «жизненная сила» (vis vitalis), которая направляет все процессы жизни (витализм). В основе материалистического подхода лежало представление о том, что под влиянием естественных факторов живое может возникнуть из неживого, органическое из неорганического. При всей своей примитивности первые исторические формы концепции самозарождения сыграли прогрессивную роль в борьбе с креационизмом.

Идея самозарождения получила широкое распространение в Средневековье и эпоху Возрождения, когда допускалась возможность самозарождения не только простых, но и довольно высокоорганизованных существ, даже млекопитающих (мышей из тряпок). Например, в трагедии У. Шекспира «Антоний и Клеопатра» Леонид говорит Марку Антонию: «Ваши египетские гады заводятся в грязи от лучей вашего египетского солнца. Вот, например, крокодил...» [1]. Известны попытки Парацельса разработать рецепты искусственного человека (гомункулуса).

1 Шекспир В. Полн. собр. соч.: В 8 т. М.. 1960. Т. 7. С. 157.

487

Невозможность произвольного зарождения жизни была доказана многими опытами. Итальянский ученый Ф. Реди экспериментально доказал невозможность самозарождения сколько-нибудь сложных животных. Применение микроскопа в биологических исследованиях открыло большое разнообразие одноклеточных организмов. На этой основе вновь возродились старые идеи произвольного самозарождения простейших существ (абиогенез). Окончательно версия о самозарождении была развенчана Л. Пастером в середине XIX в. Пастер показал, что не только в запаянном сосуде, но и в незакрытой колбе с длинной S-образной горловиной хорошо прокипяченный бульон остается стерильным, потому что в колбу через такую горловину не могут проникнуть микробы. Это доказывало, что в наше время какой бы то ни было новый организм может появиться только от другого живого существа (биогенез).

Появление жизни на Земле пытались объяснить и занесением ее из других космических миров. В 1865 г. немецкий врач Г. Рихтер выдвинул гипотезу космозоев (космических зачатков), в соответствии с которой жизнь является вечной и зачатки, населяющие мировое пространство, могут переноситься с одной планеты на другую. Эта гипотеза была поддержана многими выдающимися учеными XIX в. — У. Томсоном, Г. Гельмгольцем и др. Сходную гипотезу, названную панспермией, в 1907 г. выдвинул известный шведский естествоиспытатель С. Аррениус: во Вселенной вечно существуют зародыши жизни, которые движутся в космическом пространстве под давлением световых лучей; попадая в сферу притяжения планеты, они оседают на ее поверхности и закладывают на этой планете начало живого.

Естествознание XX в. сделало шаг вперед в изучении жизни, ее проявлений на Земле и за ее пределами. Такие отрасли знаний, как биохимия, биофизика, генетика, молекулярная биология, космическая биохимия и др., расширили представления о сущности земной жизни, о возможности существования подобных явлений вне пределов нашей планеты. Сейчас уже определенно выяснено, что «азбука» живого сравнительно проста: в любом существе, живущем на Земле, присутствует 20 аминокислот, пять оснований, два углевода и один фосфат. Небольшое число одних и тех же молекул во всех живых организмах убеждает, что все живое должно иметь единое происхождение.

488

Отрицание возможности самозарождения жизни в настоящее время не противоречит представлениям о принципиальной возможности развития органической природы, жизни в прошлом из неорганической материи. На определенной стадии развития материи жизнь может возникнуть как результат естественных процессов, совершающихся в неорганической природе. Кроме того, элементарные химические процессы на начальных этапах возникновения и развития жизни могли происходить не только на Земле, но и в других частях Вселенной и в различное время. Поэтому не исключается возможность занесения определенных предпосылочных факторов жизни на Землю из Космоса. Однако в изученной пока человеком части Вселенной только на Земле они привели к формированию и расцвету жизни.

Согласно положениям современной науки, жизнь возникла из неживого вещества в результате эволюции материи, является результатом естественных процессов, происходивших во Вселенной. Жизнь — это свойство материи, которое ранее не существовало и появилось в особый момент истории Земли. Возникновение жизни явилось результатом процессов, протекавших сначала миллиарды лет во Вселенной, а затем многие миллионы лет на Земле. От неорганических соединений к органическим, от органических к биологическим — таковы последовательные стадии процесса зарождения жизни.

Возраст Земли исчисляется примерно 4,6 млрд лет. Жизнь существует на Земле, видимо, около 3,8 млрд лет. Признаки деятельности живых организмов обнаружены в докембрийских породах, рассеянных по всему земному шару.

В сложном процессе возникновения жизни на Земле можно выделить несколько основных этапов. Первый из них связан с образованием простейших органических соединений из неорганических.

489

13.3.2. Образование простых низкомолекулярных органических соединений.

Происхождение жизни связано с длительной эволюцией углеродных соединений на поверхности первичной планеты.

На начальных этапах своей истории Земля представляла собой раскаленную планету. Вследствие вращения при постепенном снижении температуры атомы тяжелых элементов перемещались к центру, а в поверхностных слоях концентрировались атомы легких элементов (водорода, углерода, кислорода, азота), из которых и состоят тела живых организмов. При дальнейшем охлаждении Земли появились химические соединения: вода, метан, углекислый газ, аммиак, цианистый водород, а также молекулярный водород, кислород, азот. Благодаря физическим и химическим свойствам воды (высокий дипольный момент, вязкость, теплоемкость и т. д.) и углерода (трудность образования окислов, способность к восстановлению и образованию линейных соединений) они оказались у колыбели жизни.

На этих этапах сложилась первичная атмосфера Земли, которая носила не окислительный, как сейчас, а восстановительный характер. Кроме того, она была богата инертными газами (гелием, неоном, аргоном). Первичная атмосфера утрачена, а на ее месте образовалась вторая атмосфера Земли, состоящая на 20% из кислорода — одного из наиболее химически активных газов. Эта вторая атмосфера — продукт развития жизни на Земле, одно из его глобальных следствий.

Дальнейшее снижение температуры обусловило переход ряда газообразных соединений в жидкое и твердое состояние, а также образование земной коры. Когда температура поверхности Земли опустилась ниже 100 °С произошло сгущение водяных паров. Длительные ливни с частыми грозами привели к образованию больших водоемов. В результате активной вулканической деятельности из внутренних слоев Земли на поверхность выносилась раскаленная масса, в том числе карбиды — соединения металлов с углеродом. При взаимодействии карбидов с водой выделялись углеводородные соединения. Горячая дождевая вода как хороший растворитель имела в своем составе растворенные углеводороды, газы (аммиак, углекислый газ, цианистый водород), соли и другие соединения, которые могли вступать в химические реакции. С особым успехом, видимо, протекали процессы роста молекул при наличии группы — N = С = N —. Эта группа имеет большие химические возможности к росту за счет присоединения к атому углерода атома кислорода и реагирования с азотистым основанием. Так постепенно на поверхности молодой планеты Земля накапливались, причем в больших количествах, простейшие органические соединения. Подсчеты показывают, что только в результате вулканической деятельности на поверхности Земли могло образоваться около 1016 кг органических молекул. Это всего на 2—3 порядка меньше массы современной биосферы!

490

Вместе с тем астрономическими исследованиями установлено, что и на других планетах, и в космической газопылевой материи имеются углеродные соединения, в том числе углеводороды.

13.3.3. Возникновение сложных органических соединений.

Второй этап биогенеза характеризовался возникновением более сложных органических соединений (в частности, белковых веществ нуклеиновых кислот) в водах первичного океана. Благодаря высокой температуре, грозовым разрядам, усиленному ультрафиолетовому излучению относительно простые молекулы органических соединений при взаимодействии с другими веществами усложнялись, полимеризировались и образовывались углеводы, жиры, аминокослоты, белки и нуклеиновые кислоты.

Возможность такого синтеза была доказана опытами А.М. Бутлерова, который еще в середине XIX в. получил из формальдегида углеводы (сахар). В 1953—1957 гг. химиками различных стран (США, СССР, Германии) в целом ряде экспериментов из смеси газов (аммиака, метана, водяного пара, водорода) при 70—80 °С и давлении несколько атмосфер под воздействием электрических разрядов напряжением 60 000 В и ультрафиолетовых лучей были синтезированы органические кислоты, в том числе аминокислоты (глицин, аланин, аспарагиновая и глутаминовая кислоты), которые служат материалом для образования белковой молекулы. Таким образом, были смоделированы условия первичной атмосферы Земли, при которых могли образовываться аминокислоты, а при их полимеризации — и первичные белки.

Эксперименты в этом направлении оказались перспективными. В дальнейшем (при использовании других соотношений исходных газов и видов энергии) путем реакции полимеризации из простых молекул получали более сложные молекулы — белки, липиды, нуклеиновые кислоты и их производные, а позже была доказана возможность синтеза в условиях лаборатории и других сложных биохимических соединений, в том числе белковых молекул (инсулина), азотистых оснований нуклеотидов. Особенно важно то, что лабораторные эксперименты совершенно определенно показали возможность образования белковых молекул в условиях отсутствия жизни.

С определенного этапа в процессе химической эволюции на Земле активное участие стал принимать кислород. Он мог накапливаться в атмосфере Земли в результате разложения воды и водяного пара под действием ультрафиолетовых лучей Солнца. (Для превращения восстановленной атмосферы первичной Земли в окисленную потребовалось не менее 1—1,2 млрд лет.) С накоплением в атмосфере кислорода восстановленные соединения начали окисляться. Так, при окислении метана образовались метиловый спирт, формальдегид, муравьиная кислота и т.д., которые вместе с дождевой водой попадали в первичный океан. Эти вещества, вступая в реакции с аммиаком и цианистым водородом, дали начало аминокислотам и соединениям типа аденина. Важно и то, что более сложные органические соединения являются более стойкими, чем простые соединения, перед разрушающим действием ультрафиолетового излучения.

Интересной закономерностью тех органических молекул, из которых состоит живое вещество, является их асимметричность. Так, углеводы представлены только правыми формами симметрии, а аминокислоты — только левыми. В этой асимметрии содержится «ключ» к разгадке конкретных условий возникновения жизни. Пока нет единой точки зрения, объясняющей происхождение этой асимметричности. Ее объясняют и магнитным полем Земли; и воздействием поляризованного света; и тем, что синтез органических веществ проходил на поверхности асимметрических кристаллов (кварца и др.) и т.д.

Анализ возможных оценок количества органического вещества, которое накопилось неорганическим путем на ранней Земле, впечатляет: по некоторым расчетам за 1 млрд лет над каждым квадратным сантиметром земной поверхности образовалось несколько килограммов органических соединений. Если их все растворить в мировом океане, то концентрация раствора была бы приблизительно 1%. Это довольно концентрированный «органический бульон». В таком «бульоне» мог вполне успешно развиваться процесс образования более сложных органических молекул. Таким образом, воды первичного океана постепенно насыщались разнообразными органическими веществами, образуя «первичный бульон». Насыщению его в немалой степени способствовала и деятельность подводных вулканов.

492

13.3.4. Образование фазовообособленных систем.

Дальнейший этап биогенеза связан с концентрацией органических веществ и образованием фазовообособленных систем. Такие системы носят открытый характер и способны взаимодействовать с внешней средой. «Механизм», определяющий образование фазовообособленных систем, — так называемая неспецифическая самосборка, спонтанное упорядоченное объединение биополимеров за счет образования нековалентных, вторичных связей (ионные, водородные, межмолекулярного взаимодействия). Особенно активно такое объединение происходит в условиях пространственной взаимодополняемости (взаимное соответствие) поверхностей взаимодействующих молекул (комплементарность). Фазовообособленные системы — это некие протоклетки (пробионты). В качестве пробионтов могли выступать коацерваты — мельчайшие коллоидальные частицы, капли, обладающие осмотическими свойствами.

В водах первичного океана концентрация органических веществ увеличивалась, происходили их смешивание, взаимодействие и объединение в мелкие обособленные структуры раствора. Такие структуры довольно просто получить искусственно, смешивая растворы разных белков, например желатина и альбумина. Эти обособленные в растворе органические многомолекулярные структуры русский ученый А.И. Опарин назвал коацерватными каплями, или коацерватами [1]. Коацерваты образуются в слабых растворах. Вследствие взаимодействия противоположных электрических зарядов происходит агрегация молекул. Мелкие сферические частицы возникают потому, что молекулы воды создают вокруг образовавшегося агрегата поверхность раздела.

1 См.: Опарин А.И. Материя —> жизнь —> интеллект. М., 1977.

Исследования показали, что коацерваты имеют достаточно сложную организацию и обладают рядом свойств, которые сближают их с простейшими живыми системами. Например, они способны поглощать из окружающей среды разные вещества, которые вступают во взаимодействие с соединениями самой капли, и увеличиваться в размере. Эти процессы в какой-то мере напоминают первичную форму ассимиляции. Вместе с тем в коацерватах могут происходить процессы распада и выделения продуктов распада. Соотношение между этими процессами у разных коацерватов неодинаково. Выделяются отдельные динамически более стойкие структуры с преобладанием синтетической деятельности.

493

Коацерваты объясняют, как появились биологические мембраны. Образование мембранной структуры считается самым «трудным» этапом химической эволюции жизни. Истинное живое существо (в виде клетки, пусть даже самой примитивной) не могло оформиться до возникновения мембранной структуры и ферментов. Биологические мембраны — это агрегаты белков и липидов, способные отграничить вещество от среды и придать упаковке молекул прочность. Мембраны могли возникнуть в ходе формирования коацерватов.

Повышенная концентрация органических веществ в коацерватах увеличивала возможность взаимодействия между молекулами и усложнения органических соединений. Уже на стадии формирования коацерватов зарождается отбор, который приводит к сохранению наиболее устойчивых, организованных структур. Однако все это еще не дает основания считать коацерваты живыми системами, потому что они лишены способности к самовоспроизведению и саморегуляции синтеза органических веществ. Но предпосылки возникновения живого в них уже содержались.

Кроме коацерватов в «первичном бульоне» накапливались полинуклеотиды, полипептиды и различные катализаторы, без которых невозможно формирование способности к самовоспроизведению и обмену веществ. Катализаторами могли быть и неорганические вещества. Так, Дж. Бернал в свое время выдвинул гипотезу о том, что наиболее удачные условия для возникновения жизни складывались в небольших спокойных теплых лагунах с большим количеством ила, глинистой мути. В такой среде и без нагрева очень быстро протекает полимеризация аминокислот, так как частицы ила выступают в качестве своеобразных катализаторов.

13.3.5. Возникновение простейших форм живого.

Главная задача в учении о происхождении жизни — объяснить возникновение матричного синтеза белков. Жизнь возникла не тогда, когда образовались пусть даже очень сложные органические соединения, отдельные молекулы ДНК и др., а тогда, когда начал действовать механизм конвариантной редупликации. Именно поэтому завершение процесса биогенеза связано с возникновением у более стойких коацерватов способности к самовоспроизведению составных

494

частей, генетического кода, с переходом к матричному синтезу белка, характерному для живых организмов. В ходе предбиологического отбора наибольшие шансы на сохранение имели те коацерваты, у которых способность к обмену веществ сочеталась со способностью к самовоспроизведению.

Переход к матричному синтезу белков был величайшим качественным скачком в эволюции материи. Однако механизм перехода пока не ясен. Основная трудность здесь состоит в том, что для удвоения нуклеиновых кислот нужны ферментные белки, а для создания белков — нуклеиновые кислоты. Иначе говоря, нужно объяснить, как в ходе предбиологического отбора объединились способности к самовоспроизведению полинуклеотидов с каталитической активностью полипептидов в условиях пространственно-временного разобщения начальных и конечных продуктов реакции.

На этот счет существуют разные гипотезы, но все они так или иначе не полны. В настоящее время наиболее перспективными считаются гипотезы, которые опираются на принципы теории самоорганизации (см. 15), синергетики [1], на представления о гиперциклах, т.е. системах, связывающих самовоспроизводящиеся (автокаталитические) единицы друг с другом посредством циклической связи. В таких системах продукт реакции одновременно является и ее катализатором или исходным реагентом. Потому и возникает явление самовоспроизведения, которое на первых этапах вовсе могло и не быть точной копией исходного органического образования. О трудностях становления самовоспроизведения свидетельствует само существование вирусов и фагов, которые представляют собой, вероятно, осколки форм предбиологической эволюции.

1 Эйген М., Шустер П. Гиперцикл. Принципы самоорганизации макромолекул. М., 1982.

В дальнейшем предбиологический отбор коацерватов, по-видимому, происходил в нескольких направлениях. Во-первых, в направлении выработки способности накапливать белковоподобные полимеры, ответственные за ускорение химических реакций. В результате строение нуклеиновых кислот изменялось в направлении преимущественного «размножения» систем, в которых удвоение нуклеиновых кислот осуществлялось с участием ферментов.

495

Во-вторых, в системе коацерватов происходил и отбор самих нуклеиновых кислот по наиболее удачному сочетанию последовательности нуклеотидов. На этом пути формировались гены. Самовоспроизводящиеся системы со сложившейся стабильной последовательностью нуклеотидов в нуклеиновой кислоте уже могут быть названы живыми.

Знание условий, которые способствовали возникновению жизни на Земле, позволяют понять, почему в наше время невозможно появление живых существ из неорганических систем. В нашу эпоху отсутствуют условия для синтеза и усложнения органических веществ: простые соединения, которые могли бы где-то образоваться, сразу же были бы использованы гетеротрофами. Возникшая на Земле жизнь преобразовала те условия, которые сделали возможным ее появление. Теперь живые существа появляются только вследствие размножения.

Возникнув, жизнь стала развиваться быстрыми темпами (ускорение эволюции во времени). Так, развитие от первичных пробионтов до аэробных форм потребовало около 2 млрд лет, тогда как с момента возникновения наземных растений и животных прошло около 500 млн лет; птицы и млекопитающие развились от первых наземных позвоночных за 100 млн лет, приматы выделились за 12—15 млн лет, для становления человека потребовалось около 3 млн лет.

13.4. Развитие органического мира

13.4.1. Основные этапы геологической истории Земли.

Геологическая история Земли подразделяется на крупные промежутки — эры, эры — на периоды, периоды — на века. Разделение на эры, периоды и века, конечно, относительное, потому что резких разграничений между этими подразделениями не было. Но все же именно на рубеже соседних эр, периодов происходили существенные геологические преобразования — горообразовательные процессы, перераспределение суши и моря, смена климата и пр. Кроме того, каждое подразделение характеризовалось качественным своеобразием флоры и фауны.

496

Геологические эры Земли:

катархей (от образования Земли 5 млрд лет назад до зарождения жизни);
архей, древнейшая эра (3,8 млрд — 2,6 млрд лет);
протерозой (2,6 млрд — 570 млн лет);
палеозой (570 млн — 230 млн лет) со следующими периодами:
            кембрий (570 млн — 500 млн лет);
            ордовик (500 млн — 440 млн лет);
            силур (440 млн — 410 млн лет);
            девон (410 млн — 350 млн лет);
            карбон (350 млн — 285 млн лет);
            пермь (285 млн — 230 млн лет);

мезозой (230 млн — 67 млн лет) со следующими периодами:
            триас (230 млн — 195 млн лет);
            юра (195 млн — 137 млн лет);
            мел (137 млн — 67 млн лет);

кайнозой (67 млн — до нашего времени) со следующими периодами и веками:
            палеоген (67 млн — 27 млн лет):
            палеоцен (67—54 млн лет)
            эоцен (54—38 млн лет)
            олигоцен (38—27 млн лет)
            неоген (27 млн — 3 млн лет):
            миоцен (27—8 млн лет)
            плиоцен (8—3 млн лет)
            четвертичный (3 млн — наше время):
            плейстоцен (3 млн — 20 тыс. лет)
            голоцен (20 тыс. лет — наше время)

13.4.2. Начальные этапы эволюции жизни.

Более 3,8 млрд лет назад на дне мелководных, теплых и богатых питательными веществами морей, водоемов возникла жизнь в виде мельчайших примитивных существ — простейших клеток, обладающих способностью деления и передачи дочерним клеткам наследственных свойств родительских клеток.

Первый период развития органического мира на Земле характеризуется тем, что первичные живые организмы были анаэробными (жили без кислорода), питались и воспроизводились за счет «органического бульона», возникшего из неорганических систем; иначе говоря, они питались готовыми органическими веществами, синтезированными в ходе химической эволюции, т.е. были гетеротрофами. Но это не могло длиться долго, поскольку резерв органического вещества быстро убывал.

497

Первый великий качественный переход в эволюции живой материи был связан с «энергетическим кризисом»: «органический бульон» был исчерпан и следовало выработать способы синтезирования органических соединений из неорганических внутри клеток. В этой ситуации преимущество было у тех клеток, которые могли получать большую часть необходимой им энергии непосредственно из солнечного излучения.

Такой переход вполне возможен, так как некоторые простые соединения, включающие в свой состав атом магния (как в хлорофилле), обладают способностью поглощать свет. Уловленная таким образом световая энергия может быть использована для усиления реакций обмена, в частности для образования органических соединений, которые могут сначала накапливаться, а затем расщепляться с высвобождением энергии. В этом направлении и развивался процесс образования фотосинтеза.

Фотосинтез обеспечивает организму получение необходимой энергии от Солнца и вместе с тем независимость от внешних источников питательных веществ. Это значит, что питание таких организмов, называемых автотрофными, осуществляется внутренним путем благодаря световой энергии. При этом, разумеется, из внешней среды поглощаются и некоторые вещества — вода, углекислый газ, минеральные соединения. В результате фотосинтеза выделяется кислород.

Первыми фотосинтетиками на нашей планете были, видимо, цианеи, а затем зеленые водоросли. Остатки их находят в породах архейского возраста (около 3 млрд лет назад). В протерозое в морях обитало много разных представителей зеленых и золотистых водорослей. Вероятно, в это же время появились первые прикрепленные ко дну водоросли.

Переход к фотосинтезу и автотрофному питанию был великим революционным переворотом в эволюции живого. Значительно увеличилась биомасса Земли. В результате фотосинтеза кислород стал выделяться в атмосферу в значительных количествах. Первичная атмосфера Земли не содержала свободного кислорода, и для анаэробных организмов он был ядом. Потому многие одноклеточные анаэробные организмы погибли в «кислородной катастрофе»; другие укрылись в болотах, где не было свободного кислорода, и, питаясь, выделяли не кислород, а метан; третьи приспособились к кислороду, получив огромное преимущество в способности запасать энергию (аэробные клетки выделяют энергии в 10 раз больше, чем анаэробные). Благодаря фотосинтезу в органическом веществе Земли накапливалось все больше и больше энергии солнечного света, что способствовало ускорению биологического круговорота веществ и эволюции в целом.

498

Переход к фотосинтезу потребовал много времени. Он завершился примерно 1,8 млрд лет назад и привел к важным преобразованиям на Земле: первичная атмосфера Земли сменилась вторичной, кислородной; возник озоновый слой, который сократил воздействие ультрафиолетовых лучей, а значит, прекратил производство нового «органического бульона»; изменился состав морской воды — она стала менее кислотной. Таким образом, современные условия на Земле в значительной мере были созданы жизнедеятельностью организмов.

С «кислородной революцией» связан и переход от прокариотов к эукариотам. Первые организмы — прокариоты представляли собой клетки, у которых не было ядра, генетическая система закреплена на клеточной мембране, деление клетки не включало в себя точной дупликации генетического материала. Прокариоты — это простые, выносливые организмы, обладавшие высокой вариабельностью, способностью к быстрому размножению, легко приспосабливающиеся к изменяющимся условиям природной среды. Но новая кислородная среда стабилизировалась; первичную атмосферу заменила новая. Понадобились организмы, которые пусть были бы и не вариабельны, но зато лучше приспособлены к новым условиям. Нужна была не генетическая гибкость, а генетическая стабильность. Ответом на эту потребность явилось формирование эукариотов примерно 1,8 млрд лет назад.

У эукариотов ДНК уже собрана в хромосомы, а хромосомы сосредоточены в ядре клетки. Такая клетка воспроизводится без каких-либо существенных изменений. Это значит, что в неизменной природной среде «дочерние» клетки имеют столько же шансов на выживание, сколько их имела «материнская» клетка.

13.4.3. Образование царства растений и царства животных.

Дальнейшая эволюция эукариотов была связана с разделением на растительные и животные клетки. Это разделение произошло еще в протерозое (около 1—1,5 млрд лет назад), когда мир был заселен одноклеточными организмами.

499

Растительные клетки покрыты жесткой целлюлозной оболочкой, которая их защищает. Но такая оболочка не дает им возможности свободно перемещаться и добывать пищу в процессе передвижения. Вместо этого растительные клетки совершенствуются в направлении использования фотосинтеза для накопления питательных веществ.

Животные клетки имеют эластичные оболочки и потому не теряют способности к передвижению; это дает им возможность самим искать пищу — растительные клетки или другие животные клетки. Животные клетки эволюционировали в направлении совершенствования способов передвижения и способов поглощать и выделять крупные частицы (а не отдельные органические молекулы) через оболочку. Сначала крупные органические фрагменты, затем куски мертвой ткани и разлагающиеся остатки живого и, наконец, поедание и переваривание целых клеток (формирование первых хищников). С появлением хищников естественный отбор резко ускоряется.

Эволюционное единство растительного и животного миров доказывается тем, что различия между некоторыми простейшими животными и простейшими растениями относительны. Так, одноклеточные эвгленовые водоросли сочетают в себе качества растений (способность к фотосинтезу) и животных (подвижность, способ питания).

Следующим важным этапом развития жизни и усложнения ее форм было возникновение примерно 900 млн лет назад полового размножения — механизма слияния ДНК двух индивидов и последующего перераспределения генетического материала. В результате потомство похоже на родителей, но не идентично им, изменчивость потомства увеличивается. Это способствует росту эффективности естественного отбора, значительно повышает видовое разнообразие, резко ускоряет эволюцию, позволяет быстрее приспосабливаться к изменениям окружающей среды.

Значительным шагом в дальнейшем усложнении организации живых существ было появление примерно 700—800 млн лет назад многоклеточных организмов. Характерные особенности их — различие клеток, слагающих их тело; их дифференцирование и объединение в комплексы тканей и органов, выполняющих разные

500

функции в системе организма. Таким образом, многоклеточные (растения, грибы, животные) обладают дифференцированным телом, развитыми тканями, органами, которые выполняют определенные функции. Многоклеточные происходят, по-видимому, от колониальных форм одноклеточных жгутиковых.

Первые ископаемые многоклеточные животные представлены сразу несколькими типами: губки, кишечнополостные, плеченогие, членистоногие. Эволюция многоклеточных животных шла в направлении совершенствования способов передвижения, лучшей координации деятельности клеток, совершенствования форм отражения с учетом предыдущего опыта, образования вторичной полости, совершенствования способов дыхания и т.п.

В протерозое и в начале палеозоя многоклеточные растения населяют моря. Жизнь развивается в воде. Среди прикрепленных ко дну встречаются зеленые и бурые водоросли, а в толще воды — золотистые, красные и др. В кембрийских морях уже существовали почти все основные типы животных (исключая птиц и млекопитающих), которые впоследствии лишь специализировались и совершенствовались. Облик морской фауны определяли многочисленные ракообразные, губки, кораллы, иглокожие, моллюски, плеченогие, трилобиты.

В теплых и мелководных морях ордовика обитали многочисленные кораллы, значительного развития достигли головоногие моллюски — существа, похожие на современных кальмаров, длиной несколько метров. В конце ордовика в море появляются крупные плотоядные, достигавшие 10—11 м в длину. В ордовике, примерно 500 млн лет назад, появляются и первые позвоночные — животные, имеющие скелеты. Это было значительной вехой в истории жизни на Земле.

Первые позвоночные возникли, видимо, в мелководных пресных водоемах, и уже затем эти пресноводные формы завоевывают моря и океаны. Первые позвоночные — мелкие (около 10 см длиной) существа, бесчелюстные рыбообразные, покрытые чешуей, которая помогала защищаться от крупных хищников (осьминогов, кальмаров). Дальнейшая эволюция позвоночных шла в направлении образования челюстных рыбообразных, которые быстро вытеснили большинство бесчелюстных. В девоне возникают и двоякодышащие рыбы, которые были приспособлены к дыханию в воде, но обладали и легкими.

501

Рыбы подразделяются на два больших класса: хрящевые (акулы [1] и скаты) и костные — наиболее многочисленная группа рыб (96%), в настоящее время преобладающая в морях, океанах, реках, озерах. Очевидно, некоторые пресноводные двоякодышащие рыбы девонского периода дали жизнь сначала первичным земноводным (стегоцефалам), а затем и сухопутным позвоночным. Таким образом, первые амфибии появляются в девоне.

1 Акулы — очень древние животные, они появились еще в девоне и с тех пор некоторые их виды не изменились. В настоящее время интерес к акулам в массовом сознании «подогревается» рассказами об их нападениях на людей, серией фантастических фильмов «Челюсти». Акулы действительно обладают сложной системой поведения, прекрасным обонянием и электромагнитной системой ориентации.

В девоне возникает и другой чрезвычайно прогрессивный и богатый видами класс животных — насекомые. Появление насекомых свидетельствовало о том, что в ходе эволюции сложились два разных способа укрепления каркаса тела (основных несущих органов и всего тела в целом) и совершенствования форм отражения. У позвоночных роль каркаса играет внутренний скелет, у высших форм беспозвоночных — насекомых — наружный. Что касается форм отражения, то у насекомых сложная нервная система, с разбросанными по всему телу огромными и относительно самостоятельными нервными центрами, врожденные реакции преобладают над приобретенными. У позвоночных развит головной мозг и условные рефлексы преобладают над безусловными. Различие этих способов решения важнейших эволюционных задач в полной мере проявилось после перехода к жизни на суше.

13.4.4. Завоевание суши.

Важнейшим событием в эволюции форм живого являлся выход растений и живых существ из воды и последующее образование большого многообразия наземных растений и животных. Из них в дальнейшем и происходят высокоорганизованные формы жизни.

Переход к жизни в воздушной среде требовал многих изменений, поскольку вес тел здесь больше, чем в воде; в воздухе не содержится питательных веществ; воздух сухой, он иначе, чем вода, пропускает через себя свет и звук; содержание кислорода в воздухе выше, чем в воде. Вследствие всего этого выход на сушу предполагал выработку соответствующих приспособлений.

502

По-видимому, еще в конце протерозоя на поверхность суши выходят микроскопические одноклеточные растения. В результате взаимодействия абиотических (минералы, климатические факторы) и биотических (бактерии, цианеи) условий возникает почва. Почвообразовательные процессы в протерозое подготовили условия для выхода на сушу многоклеточных растений, а затем и животных.

Выход многоклеточных растений на сушу начался, очевидно, в конце силура. Растения, переселявшиеся в воздушную среду, получали значительные эволюционные преимущества, а главное из них — то, что солнечной энергии здесь больше, чем в воде, а значит, и фотосинтез становится более совершенным. Проблема высыхания решалась посредством формирования водонепроницаемой внешней оболочки, пропитанной восковидными веществами. А перестройка системы питания из почвы требовала развития корневой системы и системы транспортировки питательных веществ и воды по организму. Корни способствовали также укреплению опоры. По мере увеличения размеров растений формировалась и поддерживающая ткань — древесина. Жизнь на суше требовала также изменения репродуктивной системы.

Первые наземные растения — риниофиты; они занимали промежуточное положение между наземными сосудистыми растениями и водорослями. У риниофитов образуется сосудистая система, перестраиваются покровные ткани, появляются примитивные листья и корни. В конце силура именно риниофиты покрывали сплошным зеленым ковром прибрежные участки суши. Кстати, только в силуре началось сплошное озеленение Земли. После кислородной революции и до появления первой растительности поверхность Земли была красной в результате коррозии минералов железа.

Вслед за растениями из воды на сушу и воздух (сначала по берегам рек, озер, болот) последовали различные виды членистоногих — предки насекомых, пауков и скорпионов. Первые обитатели суши напоминали по виду современных скорпионов. И если первые амфибии появились в девоне, то активное завоевание суши позвоночными началось в карбоне. Первые полностью приспособившиеся к жизни на суше позвоночные — рептилии. Яйца рептилий были покрыты твердой скорлупой, не боялись высыхания, были снабжены пищей и кислородом для эмбриона. Первые рептилии были небольшими и напоминали живущих ныне ящериц.

503

В карбоне значительного развития достигают насекомые. Появляются летающие насекомые. Некоторые из них имели размах крыльев до 100 см.

Рассмотрим основные пути исторического развития основных наземных групп органического мира Земли — царства животных и царства растений.

13.4.5. Основные пути эволюции наземных растений.

Эволюция растений после выхода на сушу была связана с усилением компактности тела, развитием корневой системы, тканей, клеток, проводящей системы, изменением способов размножения, распространения и т.д. Переход от трахеид к сосудам обеспечивал приспособление к засушливым условиям — по сосудам вода может подниматься на большую высоту. В наземных условиях оказались непригодными для размножения свободно плавающие голые половые клетки; здесь для целей размножения формируются разносимые ветром споры или семена. Постепенно происходит дифференциация тела на корень, стебель и лист, развивается проводящая система, совершенствуются покровные, механические и другие ткани.

С момента выхода на сушу растения развиваются в двух основных направлениях — гаметофитном и спорофитном. Высшим растениям свойственна правильная смена поколений в цикле их развития. Растение имеет две фазы развития, которые сменяют одна другую: гаметофит — половое поколение, на котором образуются половые органы — антеридии и архегонии, и спорофит — неполовое поколение, нормально развитое растение, которое имеет корень, стебель и листья. На спорофите образуются споры, которые прорастают и дают начало гаметофиту. Подобная смена поколений в цикле развития растений сложилась эволюционно, в ходе естественного отбора. Гаметофитное направление было представлено мохообразными, а спорофитное — остальными высшими растениями, включая цветковые. Спорофитная ветвь оказалась более приспособленной к наземным условиям.

Для девона характерны пышные леса из прогимноспермов и древних голосеменных [1]. В карбоне растения приспособились удерживать воду и защищать семена от высыхания, благодаря чему они завоевали сухие места обитания. В карбоне с его увлажненным и

504

равномерно теплым климатом в течение всего года мощные споровые растения—лепидодендроны и сигиллярии—достигали 40 м. В карбоне и перми получают дальнейшее распространение голосеменные, у которых происходил переход от гаплоидности (одинарный набор хромосом) к диплоидности (двойной набор хромосом), что усиливало генетические потенции организма.

1 Жизнь растений, М., 1978. Т. 4. С. 257—420.

Дальнейшая эволюция связана с совершенствованием семян: превращение мегаспорангия в семязачаток; после оплодотворения (благодаря ветру, переносящему пыльцу, вырабатываемую в достаточном количестве) семязачаток превращается в семя; оплодотворенный эмбрион упаковывается в водонепроницаемую защитную оболочку, наполненную пищей для эмбриона. Внутри семени зародыш мог находиться достаточно долго, пока растение не рассеет семена и они не попадут в благоприятные условия произрастания. И тогда росток раздувает семенную оболочку, прорастает и питается запасами до тех пор, пока его корни и листья не станут сами поддерживать и питать растение, вследствие чего у всех семенных растений исчезает зависимость процесса полового размножения от наличия водной среды.

Переход к семенному размножению связан с рядом эволюционных преимуществ, способствовавших широкому распространению семенных растений; в частности, диплоидный зародыш в семенах защищен от неблагоприятных условий наличием покровов и обеспечен пищей, а семена имеют приспособления для распространения животными и т.п.

В дальнейшем происходит специализация опыления (с помощью насекомых) и распространение семян и плодов животными; усиление защиты зародыша от неблагоприятных условий: обеспечение пищей, образование покровов и др. В раннем меловом периоде у некоторых растений улучшается система защиты семян за счет образования дополнительной оболочки. Примерно в это же время появляются и первые покрытосеменные растения.

Возникновение покрытосеменных было связано с совершенствованием процесса оплодотворения — пыльцу стал переносить не ветер, а животные (насекомые). Это потребовало значительных трансформаций растительного организма. Такой организм должен содержать средства сигнализации животным о себе, привлечения животных к себе, которые должны отнести пыльцу на другое растение того же вида; поэтому цветки каждого растения

505

по внешнему (форме, окраске) виду (и запаху) должны отличаться от цветков прочих растений; животное должно само что-либо при этом получить для себя (нектар или пыльцу). Результатом трансформации растений стало появление множества разнообразных покрытосеменных (цветковых) растений.

Покрытосеменные возникают в горах тропических стран, где и ныне сосредоточено около 80% покрытосеменных. Цветковым растениям свойственны высокая эволюционная пластичность, разнообразие, порождаемые опылением насекомыми. Ведь отбор шел как по растениям, так и по насекомым. Постепенно распространяясь, цветковые растения завоевали все материки, победили в борьбе за сушу. В этом главную роль играли цветки, привлекавшие насекомых-опылителей. Кроме того, цветковые имеют развитую проводящую систему, плод, значительные запасы пищи зародыша, развитие зародыша и семени происходит быстрее и т.д.

В кайнозое формируются близкие к современным ботанико-географические области. На Земле покрытосеменные господствовали, леса достигли наибольшего распространения. Территория Европы была покрыта пышными лесами: на севере преобладали хвойные, на юге — каштаново-буковые леса с участием гигантских секвой. Ботанико-географические области периодически изменялись в зависимости от потеплений и похолоданий, наступления ледников и вызванного ими отступления теплолюбивой растительности на юг, а кое-где и ее полного вымирания: появились холодоустойчивые травянистые и кустарниковые растения, леса сменялись степью и т.д. В плейстоцене складываются современные фитоценозы.

13.4.6. Пути эволюции животных.

Вышедшие на сушу рептилии дали множество видов; они осваивали все новые места обитания: большинство уходило от воды, а некоторые вновь ушли в воду (мезозавры). В конце пермского периода рептилии преобладали на суше. Мезозойская эра — время господства рептилий, пресмыкающихся.

Некоторые рептилии становятся хищными, другие — растительноядными. В меловом периоде появились гигантские растительноядные динозавры. От древних мелких рептилий, напоминающих современных ящериц, произошли самые разнообразные виды — плавающие, передвигающиеся по суше и летающие рептилии, динозавры (весом до 30 т и до 30 м длиной, «правившие миром» более 100 млн лет). Особенно интенсивно развиваются морские рептилии в юре (ихтиозавры, плезиозавры).

506

Постепенно «заселяется» и воздушная среда. Насекомые начали летать еще в карбоне и около 100 млн лет были единовластными хозяевами воздуха. В триасе появляются первые летающие ящеры, В юре они успешно осваивают воздушную среду. Возникают самые известные нам летающие ящеры — птеродактили, охотившиеся на многочисленных крупных насекомых. Некоторые летающие ящеры имели размах крыльев до 20 м. В юрском же периоде от одной из ветвей рептилий произошли птицы; первые птицы причудливо сочетали признаки рептилий и птиц (поэтому птиц иногда называют «взлетевшие рептилии»).

От примитивных рептилий, из группы цельночерепных, развивается ветвь, приведшая несколько позже — в триасе — к млекопитающим. В юрском и меловом периодах млекопитающие стали более разнообразными. В конце мезозоя появились плацентарные млекопитающие.

В конце мезозоя в условиях похолодания сокращаются пространства, занятые богатой растительностью, что влечет за собой вымирание в конце мела сначала растительноядных динозавров, а затем и охотившихся на них хищных динозавров. При этом исключительные преимущества получают теплокровные животные — птицы и млекопитающие.

Кайнозой — время расцвета насекомых, птиц и млекопитающих. В палеоцене появляются первые хищные млекопитающие, а некоторые виды млекопитающих «уходят» в море (китообразные, ластоногие, сиреновые). От древних хищных происходят копытные. От некоторых видов насекомоядных обособляется отряд приматов. В плиоцене встречаются уже все современные семейства млекопитающих.

В кайнозое формировался стайный, стадный образ жизни, который явился ступенькой к социальному общению. Причем, если у насекомых (муравьи, пчелы, термиты) биосоциальность вела к "потере индивидуальности, то у млекопитающих, напротив, к усилению индивидуальных черт особи. В неогене на обширных открытых пространствах саванн Африки появляются многочисленные виды обезьян. Некоторые виды приматов переходят к прямохождению. Так в биологическим мире вызревали предпосылки возникновения Человека и мира Культуры.
.

Ваш комментарий о книге
Обратно в раздел Наука












 





Наверх

sitemap:
Все права на книги принадлежат их авторам. Если Вы автор той или иной книги и не желаете, чтобы книга была опубликована на этом сайте, сообщите нам.