Библиотека
Теология
Конфессии
Иностранные языки
Другие проекты
|
Комментарии (2)
Бондарев В. Концепции современного естествознания
Глава 8 КОСНОЕ ВЕЩЕСВО ЗЕМЛИ
§ 8.1. Форма и строение Земли
Форма Земли
Земля является той ареной, на которой возникают, развиваются и погибают цивилизации, происходит становление единого современного общества. От того, насколько хорошо мы будем понимать устройство нашей планеты, во многом зависит наше будущее. Однако мы знаем о ней не больше (а зачастую и существенно меньше), чем о далеких звездах.
Начнем с представлений о форме Земли. В настоящее время никто не отрицает утверждения о том, что наша планета «круглая». Действительно, в первом приближении форма Земли определяется как шаровидная. Такое представление возникло еще в Древней Греции. И только в XVII-XVIII вв. оно стало уточняться. Было выяснено, что Земля сплюснута по оси вращения (разница между осями составляет около 21 км). Предполагается, что Земля формировалась под влиянием совместного действия гравитации и центробежных сил. Равнодействующая этих сил - сила тяжести — выражается в ускорении, которое приобретает каждое тело у поверхности Земли. Уже И. Ньютон теоретически обосновал положение, согласно которому Земля должна быть сжата в направлении оси вращения и принять форму эллипсоида, что было впоследствии подтверждено эмпирически. Позднее было обнаружено, что Земля сжата не только на полюсах, но в небольшой степени и по экватору. Наибольший и наименьший радиусы экватора различаются на 213 м, т.е. Земля является трехосным эллипсоидом. Но представления о Земле как об эллипсоиде также верны лишь в первом приближении.
Реальная поверхность Земли еще более сложна. Наиболее близок к современной фигуре Земли геоид - воображаемая уровенная поверхность, по отношению к которой вектор силы тяжести повсеместно направлен перпендикулярно. На площади акватории океанов геоид совпадает с поверхностью воды, находящейся в полном покое. Расхождение между геоидом и эллипсоидом местами достигает ±(100-150) м, что объясняется неравномерным распределением масс разной плотности в теле Земли, влияющим на изменение силы тяжести, следовательно, и на форму геоида. В настоящее время для создания геодезической основы карт и других целей в России используется эллипсоид Красовского со следующими основными параметрами: экваториальный радиус 6378,245 км; полярный радиус 6356,863 км; полярное сжатие 1/298,25; площадь поверхности Земли около 510 млн км2, ее объем 1,083 · 1012 км3. Масса Земли составляет 5,976 · 1027 г.
Внутреннее строение Земли
Отметим, что непосредственному наблюдению доступны только самые верхние (до глубин 15—20 км) горизонты земной коры, выходящие на поверхность или вскрытые рудниками, шахтами и буровыми скважинами. Суждения о составе и физическом состоянии более глубоких оболочек основываются на данных геофизических методов, т.е. имеют предположительный характер. Из этих методов особое значение имеют сейсмический метод, основанный на регистрации скорости распространения в теле Земли волн, вызываемых землетрясениями или искусственными взрывами. В очагах землетрясений возникают так называемые продольные сейсмические волны, которые рассматриваются как реакция среды на изменение объема, и поперечные волны реакция среды на изменение формы, - распространяющиеся только в твердых телах. На основе геофизических наблюдений установлено, что Земля неоднородна и дифференцирована вдоль радиуса.
В настоящее время известно несколько моделей строения Земли. Большинство исследователей принимает модель, согласно которой выделяются три главные оболочки Земли, разделенные четко выраженными поверхностями сейсмического раздела, где скорости сейсмических волн резко изменяются (рис. 8.1) [1, 10, 12, 35]:
- земная кора - твердая верхняя оболочка Земли. Ее мощность изменяется от 5-10 км под океанами до 30-40 км в равнинных областях и достигает 50-75 км в горных районах (максимальные значения встречаются под Андами и Гималаями);
- мантия Земли распространяется ниже земной коры до глубины 2900 км от поверхности и подразделяется на две части: верхнюю мантию - до глубины 900-1000 км и нижнюю мантию - от 900-1000 до 2900 км;
3) ядро Земли, где выделяют внешнее ядро, - до глубины около 5120 км и внутреннее ядро — ниже 5120 км. Земная кора отделяется от мантии в большинстве случаев достаточно резкой сейсмической границей - поверхностью Mохоровичича (сокращенно Μ οхо, или М). Сейсмическим методом в верхней мантии выявлен слой относительно менее плотных, как бы «размягченных» горных пород - астеносфера.В этом слое наблюдаются понижение скорости сейсмических волн, особенно поперечных, и повышение электрической проводимости, что свидетельствует о менее вязком, более пластичном состоянии вещества - на 2-3 порядка ниже, чем в покрывающих и подстилающих слоях мантии. Предполагается, что эти свойства связаны с частичным плавлением вещества мантии (1-10%) в результате более быстрого повышения температуры, нежели давления с увеличением глубины. Вязкость астеносферы существенно изменяется как в вертикальном, так и в горизонтальном направлении, изменяется и ее мощность. Астеносфера располагается на различных глубинах: под континентами - от 80-120 до 200-250 км, под океанами - от 50-70 до 300-400 км. Она наиболее четко выражена и приподнята, местами до глубин 20-25 км и менее, под наиболее подвижными зонами земной коры и, напротив, слабо выражена и опущена под наиболее спокойными участками континентов (щитами платформ). Астеносфере принадлежит большая роль в глубинных геологических процессах. Твердый надастеносферный слой мантии вместе с земной корой называется литосферой.
Основные характеристики Земли
Средняя плотность Земли, по гравиметрическим данным, составляет 5,5 г/см . Плотность горных пород, слагающих земную кору, колеблется от 2,4 до 3,0 г/см . Сопоставление этих значений со средней плотностью Земли приводит к предположению, что с глубиной должно наблюдаться увеличение плотности в мантии и ядре Земли. Считается, что в над астеносферной части мантии ниже границы Мохо породы значительно плотнее. При переходе от мантии к ядру происходит скачок плотности до 9,7-10,0 г/см3, затем она повышается и во внутреннем ядре составляет 12,5-13,0 г/см3.
Рассчитано, что ускорение силы тяжести изменяется от 9,82 м/с2 у поверхности до максимального значения 10,37 м/с2 в основании нижней мантии (2900 км). В ядре ускорение силы тяжести быстро падает, доходя на глубине около 5000 км до 4,52 м/с2, далее на глубине 6000 км падая до 1,26 м/с2, а в центре - до нуля.
Известно, что Земля представляет собой как бы гигантский магнит с силовым полем вокруг. В современную эпоху магнитные полюса Земли расположены вблизи географических полюсов, но не совпадают с ними. В настоящее время происхождение главного магнитного поля Земли чаще всего объясняют с помощью динамотеорической концепции Френкеля-Эльзассера, согласно которой это поле возникает в результате действия системы электрических токов, вызванных сложными конвективными движениями в жидком внешнем ядре при вращении Земли. На общий фон магнитного поля накладывается влияние горных пород, которые содержат ферромагнитные минералы, залегающие в верхней части земной коры, в результате чего на поверхности Земли образуются магнитные аномалии. Остаточная намагниченность горных пород, содержащих ферромагнитные минералы, ориентирована, как магнитное поле Земли, существовавшее в период их образования. Исследования этой намагниченности показали, что магнитное поле Земли неоднократно испытывало инверсии в ходе геологической истории: северный полюс становился южным, а южный - северным. Шкалу магнитных инверсий используют для сопоставления толщ горных пород и определения их возраста.
Для понимания процессов, происходящих в глубинах Земли, важным оказался вопрос теплового поля планеты. В настоящее время выделяют два источника тепла Земли - Солнце и недра Земли. Прогревание Солнцем распространяется на глубину, не превышающую 28-30 м. На некоторой глубине от поверхности располагается пояс постоянной температуры, равной среднегодовой температуре данной местности. Так, в Москве на глубине 20 м наблюдается постоянная температура, равная +4,2 °С, а в Париже +11,83 °С на глубине 28 м. Ниже пояса постоянной температуры наблюдениями в шахтах, рудниках, буровых скважинах установлено повышение температуры с глубиной, что обусловлено тепловым потоком, поступающим из недр Земли.
Среднее для Земли значение внутреннего теплового потока - около 1,4-1,5 мккал/см2в секунду. Установлено, что тепловой поток зависит от степени подвижности коры и интенсивности эндогенных (внутренних) процессов. В пределах спокойных районов континентов его значение несколько меньше среднего. Существенные колебания теплового потока характерны для гор, на большей части океанического дна тепловой поток почти такой же, как на материковых равнинах, но в пределах так называемых рифтовых долин срединно-океанских хребтов увеличивается иногда в 5-7 раз. Высокие значения теплового потока отмечены во внутренних областях Красного моря.
Источники внутренней тепловой энергии Земли еще недостаточно изучены. Но основными считаются: 1) распад радиоактивных элементов (урана, тория, калия и др.); 2) гравитационная дифференциация с перераспределением материала по плотности в мантии и ядре, сопровождающаяся выделением теплоты. Наблюдения в рудниках, шахтах и буровых скважинах свидетельствуют о повышении температуры с глубиной. Для ее характеристики введен геотермический градиент - нарастание температуры в градусах Цельсия на единицу глубины. Его значения различны в разных местах земного шара. Средним считается примерно 30 °С на 1 км, а крайние значения диапазона различаются более чем в 25 раз, что объясняется различной эндогенной активностью земной коры и различной теплопроводностью горных пород. Наибольший геотермический градиент, равный 150 °С на 1 км, отмечен в штате Орегон (США), а наименьший (6 °С на 1 км) - в Южной Африке. В Кольской скважине на глубине 11 км зарегистрирована температура около 200 °С. Наибольшие значения градиента связывают с подвижными зонами океанов и континентов, а наименьшие — с наиболее устойчивыми и древними участками континентальной коры. Изменение температуры с глубиной определено весьма приблизительно по косвенным данным. Для земной коры расчеты температур основываются главным образом на данных о тепловом потоке, теплопроводности горных пород, температуре лав, но для больших глубин такие данные отсутствуют, и состав мантии и ядра точно неизвестен. Предполагается, что ниже астеносферы температура закономерно повышается при значительном уменьшении геотермического градиента.
На основе представлений о том, что ядро состоит главным образом из железа, были проведены расчеты его плавления на различных границах с учетом существующего там давления. Получено, что на границе нижней мантии и ядра температура плавления железа должна быть 3700 °С, а на границе внешнего и внутреннего ядра - 4300 °С. Из этого делается вывод, что с физической точки зрения температура в ядре составляет 4000-5000 °С. Для сравнения можно указать, что на поверхности Солнца температура чуть меньше 6000 °С.
Коснемся вопроса об агрегатном состоянии вещества Земли. Считается, что вещество литосферы находится в твердом кристаллическом состоянии, так как температура при существующих давлениях здесь не достигает точки плавления. Однако местами и внутри земной коры сейсмологи отмечают наличие отдельных низкоскоростных линз, напоминающих астеносферный слой. По сейсмическим данным, вещество мантии Земли, через которую проходят как продольные, так и поперечные сейсмические волны, находится в эффективно-твердом состоянии. При этом вещество нижней мантии, вероятно, находится в кристаллическом состоянии, поскольку существующее в них давление препятствует плавлению. Только в астеносфере, где скорости сейсмических волн понижены, температура приближается к точке плавления. Предполагается, что вещество в астеносферном слое может быть в аморфном стекловидном состоянии, а часть (менее 10%) даже в расплавленном. Геофизические данные, а также очаги магмы, возникающие на различных уровнях астеносферного слоя, указывают на неоднородность и расслоенность астеносферы. Что касается состояния вещества в ядре Земли, то большинство исследователей считают, что вещество внешнего ядра находится в жидком состоянии, а внутреннее ядро — в твердом, поскольку переход от мантии к ядру сопровождается резким снижением скорости продольных сейсмических волн, а поперечные волны, распространяющиеся только в твердой среде, в него не входят.
§ 8.2. Вещественный состав и строение земной коры
Химический и минеральный состав Земли
Анализ химического и минерального состава Земли имеет существенный теоретический и практический интерес: он может приоткрыть многие тайны образования и эволюции нашей планеты и дать ключ к более эффективному поиску минеральных ресурсов. О среднем составе Земли судят по веществу, из которого состоят метеориты, так как считается, что именно из этого материала в свое время произошли планеты Солнечной системы, в том числе Земля [12, 24, 27, 35 и др.]. Выделяют каменные (97,7% всех находок), железокаменные (1,3%) и железные (5,6%) метеориты. Их химический анализ позволяет предположить, что в составе Земли преобладает железо (30-36%), кислород (29-31%), кремний (14-15%) и магний (13-16%). Кроме того, количество серы, никеля, алюминия и кальция измеряется единицами процентов каждый. Все остальные элементы присутствуют в количестве, меньшем 1%.
Наиболее достоверные сведения имеются о химическом составе самой верхней части земной коры материков, доступной для непосредственного наблюдения и анализа [12, 24, 27, 35 и др.]. Первые данные были опубликованы в 1889 г. американским ученым Ф. Кларком, который получил их как средние арифметические имевшихся в его распоряжении 6000 результатов химического анализа различных горных пород. В дальнейшем эти данные уточнялись. В составе земной коры наиболее распространены следующие восемь химических элементов, составляющих в сумме свыше 98% по весу: кислород (46,5%), кремний (25,7%), железо (6,2%), кальций (5,8%), магний (3,2%), натрий (1,8%), калий (1,3%). Еще пять элементов содержатся в земной коре в количестве десятых долей процента: титан (0,52%), углерод (0,46%), водород (0,16%), марганец (0,12%), сера (0,11%). На все остальные элементы приходится около 0,37%.
В 1924 г. норвежский исследователь В.М. Гольдшмит предложил широко используемую и в настоящее время геохимическую классификацию химических элементов, разделив их на четыре группы:
◊ сидерофильная группа химических элементов включает в себя элементы семейства железа, платиновые металлы, а также молибден и рений (всего 11 элементов), по геохимическим особенностям близкие железу;
◊ литофильные элементы составляют группу из 53 элементов, составляющих основную массу минералов земной коры (литосферы): кремний, титан, цирконий, фтор, хлор, алюминий, натрий, калий, магний, кальций и т.д.;
◊ халькофильная группа химических элементов представлена серой, сурьмой, висмутом, мышьяком, селеном, теллуром и рядом тяжелых цветных металлов (медь и др.) - всего 19 элементов, склонных к образованию природных сульфидов, селенидов, теллуридов, сульфосолей и иногда встречающихся в самородном состоянии (золото, серебро, ртуть, висмут, мышьяк и др.);
◊ к атмофильной группе причислены химические элементы (азот, водород, благородные газы), типичные для земной атмосферы, в составе которой они присутствуют в виде свободных атомов или молекул.
Земную кору слагают разные группы горных пород, различающихся условиями образования и составом. Горные породы представляют собой минеральные агрегаты, т.е. определенное сочетание минералов. Минералами называют природные химические соединения или самородные химические элементы, которые возникли в результате определенных физико-химических процессов, протекающих в земной коре и на ее поверхности. Большинство минералов представляет собой кристаллические тела, и лишь немногие из них - аморфные. Формы природных кристаллов разнообразны и зависят от закономерного расположения в пространстве микрочастиц — атомов, ионов, молекул, образующих структуру кристаллов, или их кристаллическую (пространственную) решетку. Для формирования этой структуры большое значение имеют физико-химические и термодинамические условия. Так, графит — самый мягкий (твердость 1) минерал - образует таблитчатые кристаллы, а алмаз - самый твердый минерал (твердость 10) - имеет самую совершенную кубическую группу симметрии. Такая разница в свойствах связана с разницей в расположении атомов в кристаллической решетке.
В настоящее время известно более 2500 природных минералов, не считая разновидностей, но только немногие (около 50) - породообразующие - участвуют в образовании горных пород, слагающих земную кору. Остальные минералы в горных породах встречаются в виде незначительных примесей и называются акцессорными минералами. Классификация минералов основана на их химическом составе и кристаллической структуре. Главнейшие породообразующие и рудные минералы объединяются в несколько минеральных классов:
◊ самородные элементы: самородное золото, серебро, медь, платина, графит, алмаз, сера;
◊ сульфиды: пирит, халькопирит, галенит, киноварь;
◊ галоидные соединения: галит (поваренная соль), сильвин, карналлит и флюорит;
◊ оксиды и гидрооксиды: кварц, опал, магнетит (магнитный железняк), гематит, корунд, лимонит, гетит;
◊ карбонаты: кальцит (известковый шпат), прозрачная разность которого называется исландским шпатом, доломит;
◊ фосфаты: апатит, фосфорит;
◊ сульфаты: гипс, ангидрит, мирабилит (глауберова соль), барит;
О вольфраматы: вольфрамит;
◊ силикаты: кварц, оливин, берилл, пироксены, роговая обманка, слюды, змеевик, тальк, глауконит, полевые шпаты.
Особый класс минералов составляют силикаты. В этот класс входят наиболее распространенные в земной коре (более 90% по весу) породообразующие минералы, чрезвычайно сложные по химическому составу и участвующие в строении всех типов горных пород, в первую очередь магматических и метаморфических. Они составляют примерно треть всех известных минералов. Иногда в силикаты включают кварц. Основу кристаллической решетки силикатов составляет ионная четырехвалентная группировка SiO4.
Еще древние рудокопы подметили, что в рудных месторождениях отдельные минералы всегда встречаются совместно. Совместное нахождение минералов обозначается термином «парагенезис» или «парагенез» (греч. «пара» - возле, подле). Для каждого процесса минералообразования характерны свои закономерные сочетания минералов. В качестве примеров парагенезиса можно привести кварц и золото, халькопирит и серебряные руды. Знание парагенезиса минералов облегчает задачу поиска полезных ископаемых по их спутникам. Так, спутник алмаза пироп (разновидность граната) помог в свое время открыть коренные месторождения алмазов в Якутии.
Определенное сочетание минералов, как указывалось выше, образует горные породы - природные агрегаты минералов более или менее постоянного минералогического и химического состава, образующие самостоятельные геологические тела, слагающие земную кору. Форма, размеры и взаимное расположение минеральных зерен обусловливают структуру и текстуру горных пород. Слагающие земную кору горные породы в большинстве своем представляют агрегат многих минералов, реже они состоят из зерен одного минерала. Минеральный состав, строение и формы залегания горной породы отражают условия ее образования.
По происхождению горные породы разделяют на три группы:
- магматические горные породы, образующиеся в результате внедрения (интрузивные породы) в земную кору или извержения на поверхность магмы (эффузивные породы). Излившаяся на поверхность магма называется лавой. С магматическими связаны многие месторождения металлических полезных ископаемых, а также апатитов, алмазов и т.д.;
- осадочные горные породы, образовавшиеся при осаждении разрушенных магматических пород и некоторыми другими путями в океане, морях, озерах и реках. В их составе выделяют обломочные, глинистые, химические и органогенные. Как полезные ископаемые имеют значение следующие осадочные породы: нефть, газ, уголь, торф, бокситы, фосфориты и др.;
- метаморфические породы, т.е. преобразованные и из магматических, и из осадочных. В метаморфических условиях формируются железные, медные, полиметаллические, урановые и другие руды, а также графит, драгоценные камни, огнеупоры и т.п. Иногда из группы метаморфических выделяют как самостоятельный класс метасоматические горные породы, образовавшиеся в результате метасоматизма - процесса замещения одних минералов другими с существенными изменениями химического состава горной породы, но с сохранением ее объема и твердого состояния при воздействии растворов высокой химической активности. При этом происходит миграция химических элементов.
Типы земной коры
Из осадочных, магматических и метаморфических горных пород, залегающих выше границы Мохо, состоит вся земная кора. Соотношение различных типов горных пород в составе коры изменяется в зависимости от рельефа Земли и геологической структуры. В пределах континента выделяются равнины и горные области, в океанах — подводные окраины материков (шельф до глубины около 200 м, континентальный склон с подножием до глубин 2,5-3,0 км), ложе (с преобладающими глубинами 4—6 км), глубоководные желобы (до 10-11 км и более) и срединно-океанские хребты.
Обычно выделяют четыре главных типа земной коры: континентальный, океанский, субконтинентальный и субокеанский [10, 12, 30, 35].
Континентальный тип земной коры имеет различную мощность (толщину): в пределах континентальных равнин — платформ - 35-40 км, в молодых горных сооружениях - 55-70 км. Максимальная мощность (около 70-75 км) установлена под Гималаями и Андами. В строении континентальной коры участвуют две главные части: осадочная, состоящая из осадочных горных пород; консолидированная, сложенная магматическими и метаморфическими породами, которая обычно разделяется на гранитный (гранитогнейсовый) и базальтовый (гранулито-базальтовый) слои. Для всех слоев земной коры характерна переменная мощность. Так, мощность осадочного слоя колеблется от нуля (на щитах - Балтийском, Алданском и др.) до 5 км в пределах континентальных равнин и только в крупных прогибах консолидированной коры увеличивается до 8-10 км и более. В орогенных областях в предгорных и межгорных прогибах этот слой достигает 15-20 км. Мощность гранитного слоя изменяется от 10 до 25 км в зависимости от общей мощности земной коры, на равнинах она составляет примерно 15-20 км, в горных районах - 20-25 км. Базальтовый слой также обладает изменчивой мощностью - от 10-15 до 20 км в пределах платформ и до 25-35 км в некоторых горных сооружениях.
Океанский тип земной коры, характерный для ложа Мирового океана, резко отличается от континентального как по мощности, так и по составу. В нем отсутствует гранитный слой, а мощность колеблется от 5 до 12 км, в среднем составляя 6-7 км. Состоит он из трех слоев: 1) первый (верхний) слой рыхлых морских осадков имеет мощность от первых сотен метров до 1 км, реже больше; 2) второй слой имеет мощность от 1 до 1,5-3 км. По данным бурения, слой представлен базальтовыми лавами с подчиненными прослоями кремнистых и карбонатных пород; 3) третий слой мощностью 3,5-5 км пока не пройден бурением.
Субокеанский тип земной коры характерен для глубоководных котловин окраинных и внутренних морей (южная котловина Каспийского, Черное, Средиземное, Охотское и другие моря). Особенность строения этого типа земной коры — большая мощность осадочных пород (до 4—10 км, местами до 20 км). Подобное строение коры характерно и для некоторых глубоких впадин на суше, например для центральной части Прикаспийской низменности (впадины).
Субконтинентальный тип земной коры характерен для островных дуг (Алеутской, Курильской и др.) и окраин материков. По строению он близок к материковому типу, но имеет меньшую мощность (20—30 км). Особенностью субконтинентальной коры островных дуг является нечеткость разделения слоев консолидированной коры.
Последние геофизические данные и материалы уникальной сверхглубокой Кольской скважины глубиной свыше 12 км позволяют говорить о гораздо более сложной структуре земной коры и иначе подойти к истолкованию строения земной коры, стимулируя создание ее новых моделей. Например, в модели Н.И. Павленковой консолидированная часть континентальной коры (ниже осадочного слоя) в отличие от описанной двухслойной модели разделяется на три слоя. Более того, представленная двухслойная модель консолидированной части континентальной коры с выделением гранитного и базальтового слоев оспаривается многими сейсмологами. Геофизические исследования свидетельствуют о полной неопределенности в положении границы между этими слоями. Это подтвердили итоги бурения Кольской сверхглубокой скважины. По предварительным сейсмическим данным, эта скважина должна была вскрыть базальтовый слой на глубине около 7 км, однако этого не произошло, оказалось, что сейсмическая граница проходит внутри однообразной толщи метаморфических пород.
Это еще раз подчеркивает, что строение земной коры и Земли в целом отличается большой сложностью и разнообразием вследствие различной истории ее формирования и различного характера протекающих в ней процессов. Многое еще остается неясным, особенно в интерпретации вещественного состава нижних слоев континентальной коры.
§ 8.3. Гидросфера и атмосфера Земли
Водная оболочка Земли
Гидросфера — водная оболочка Земли, включающая в себя всю химически не связанную воду. Вода присутствует на Земле в трех фазовых состояниях: твердом, жидком и газообразном. Из почти 1,5 млрд км3 общего объема вод гидросферы около 94% приходится на Мировой океан, 4% — на подземные воды (большую их часть представляют глубинные рассолы), 1,6% -на ледники и постоянные снега, около 0,25% - на поверхностные воды суши (реки, озера, болота), большая часть которых расположена в озерах [1, 7, 14, 16, 19]. Вода присутствует в атмосфере и живых организмах.
Единство гидросферы обусловлено круговоротом воды - процессом ее непрерывного перемещения под воздействием солнечной энергии и силы тяжести, охватывающим гидросферу, атмосферу, литосферу и живые организмы (рис. 8.2). Круговорот воды слагается из испарения с поверхности океана, переноса влаги в атмосфере, выпадения осадков на океан и сушу, их просачивания и поверхностного и подземного стока с суши в океан. В процессе мирового круговорота воды происходит постепенное ее обновление во всех частях гидросферы. Причем подземные воды обновляются за сотни, тысячи и миллионы лет; полярные ледники - за 8-15 тыс. лет; воды Мирового океана — за 2,5-3 тыс. лет; замкнутые, бессточные озера - за 200-300 лет; проточные - за несколько лет; реки - за 11—20 суток; водяной пар атмосферы — за 8 суток; вода в организмах - за несколько часов [1, 7, 14, 16, 19]. Известно, что, чем медленнее водообмен, тем выше минерализация (соленость) воды в элементе гидросферы. Именно поэтому воды подземной гидросферы наиболее высокоминерализованы, а речные воды служат началом почти всех источников пресных вод.
Важным элементом гидросферы является Мировой океан, средняя глубина которого 3700 м, наибольшая - И 022 м (Марианский желоб). В морской воде растворены в разных количествах почти все известные на Земле вещества. Основная часть растворенных в морской воде солей - хлориды (88,7%) и сульфаты (10,8%), карбонаты (0,3%).
В каждом килограмме воды содержится в среднем около 35 г солей. Соленость воды в океане зависит от соотношения количества атмосферных осадков и испарения. Соленость ее понижают речные воды и воды тающих льдов. В открытом океане распределение солености в поверхностных слоях воды (до 1500 м) имеет зональный характер: в экваториальном поясе, где выпадает много осадков, она пониженная, в тропических широтах — повышенная, в умеренных и полярных широтах соленость снова снижается. Мировой океан поглощает и выделяет огромное количество газов (кислород, азот, углекислый газ, сероводород, аммиак и др.).
Температура поверхности воды Мирового океана также характеризуется зональностью, которая нарушается течениями, влиянием суши, постоянными ветрами. Наибольшие средние годовые температуры (27-28 °С) наблюдаются в экваториальных широтах. С увеличением широты температура вод Мирового океана понижается до 0 °С и даже ниже в приполярных областях (температура замерзания воды со средней соленостью на 1,8 °С ниже нуля). Средняя температура поверхностного слоя воды составляет +17,5 °С, а средняя температура воды всего Мирового океана +4 °С. Толщина многолетних льдов достигает мощности 3-5 м. Материковые льды в океане образуют плавающие горы - айсберги. Льды покрывают около 15% всей акватории Мирового океана.
Вода Мирового океана не находится в состоянии покоя, а совершает колебательные (волнения) и поступательные движения (течения). Волны на поверхности океана образуются главным образом благодаря ветру; высота их обычно не более 4-6 м, максимально до 30 м; длина волн от 100-250 м до 500 м. Волнение, вызванное ветром, с глубиной затухает: на глубине 200 м даже сильное волнение незаметно. При приближении к берегу от трения о дно скорость движения подошвы волны уменьшается, и гребень волны опрокидывается - возникает прибой. У крутых берегов, где энергия волн не гасится о дно, сила их удара достигает 30-38 т на 1 м2. Волнения всей толщи океанских вод вызывают землетрясения, извержения вулканов, приливообразующие силы. Так, подводные землетрясения и извержения вулканов становятся причиной цунами, распространяющихся со скоростью более 700 км/ч. В открытом океане длина цунами оценивается в 200-300 км при высоте около 1 м, что обычно незаметно для судов. У берегов высота волны цунами увеличивается до 30 м, что вызывает катастрофические разрушения.
Под действием сил притяжения Луны и Солнца возникают приливы и отливы. Особенно заметны приливы, вызываемые Луной. Вследствие вращения Земли приливные волны перемещаются навстречу ее движению - с востока на запад. Там, где проходит гребень приливной волны, возникает прилив, сменяющийся отливом. В зависимости от условий приливы могут быть полусуточные (два прилива и два отлива за лунные сутки), суточные (один прилив и один отлив за сутки) и смешанные (суточные и полусуточные приливы сменяют друг друга). Солнечные приливы в 2,17 раза меньше лунных. Лунные и солнечные приливы могут слагаться и вычитаться. Величина и характер морских приливов зависят от взаимного положения Земли, Луны и Солнца, от географической широты, глубины моря, формы береговой линии. В открытом океане высота прилива не более 1 м, в узких заливах - до 18м. Приливная волна проникает в некоторые реки (Амазонка, Темза) и, быстро перемещаясь вверх по течению, образует водяной вал высотой до 5 м.
Течения в океане вызываются ветром, перепадом высоты уровня воды и плотности. Главная причина поверхностных течений - ветер. В более холодных водах отмечаются теплые течения, в менее холодных — холодные. Теплые течения направляются из более низких широт в сторону более высоких, холодные — наоборот. На направление течения влияет вращение Земли, объясняющее отклонение их вправо в Северном полушарии и влево - в Южном. Системы поверхностных течений в океанах зависят от направления господствующих ветров, от положения и конфигурации океанов. В тропических широтах устойчивые воздушные течения над океанами (пассаты) вызывают северное и южное пассатные течения, нагоняющие воду к восточным берегам материков. Между ними возникает межпассатное противотечение. Вдоль восточных берегов на север и на юг в умеренные широты уходят теплые течения. В умеренных широтах западные ветры вызывают течения, пересекающие океаны с запада на восток. Причины течений на глубине - разная плотность воды, которая может быть вызвана давлением массы воды сверху (например, в местах нагона или сгона ее ветром), изменениями температуры и солености. Изменения плотности воды — причина ее вертикальных перемещений: опускание холодной (или более соленой) и подъем теплой (или менее соленой).
С перемещением воды связаны снабжение глубин кислородом и другими газами из атмосферы и вынос питательных для организмов веществ с глубин в поверхностные слои. Места интенсивного перемешивания воды наиболее богаты жизнью. В Мировом океане обитает около 160 тыс. видов животных и более 10 тыс. видов водорослей. Выделяют три группы морских организмов: 1) планктон - пассивно перемещающиеся одноклеточные водоросли и животные, рачки, медузы и др.; 2) нектон- активно передвигающиеся животные (рыбы, китообразные, черепахи, головоногие моллюски и др.); 3) бентос — организмы, живущие на дне (бурые и красные водоросли, моллюски, ракообразные и др.). Распределение жизни в поверхностном слое воды имеет зональный характер.
Значительную роль в существовании жизни на Земле играют воды суши, к которым относят подземные воды, реки, озера, болота, ледники.
Подземные воды находятся в толще горных пород верхней части земной коры. Основная их масса образуется вследствие просачивания с поверхности дождевых, талых и речных вод. Глубина залегания, направление и интенсивность движения подземных вод зависят от водопроницаемости горных пород. По условиям залегания подземные воды подразделяют на почвенные; грунтовые, залегающие на первом от поверхности постоянном водоупорном слое; межпластовые, находящиеся между двумя водоупорными пластами. Грунтовые воды питают реки и озера.
Реки - постоянные водные потоки на поверхности суши. Главная река с притоками образует речную систему. Площадь, с которой река собирает поверхностные и подземные воды, называется речным бассейном. Бассейны соседних рек отделяются водоразделами. Скорость течения реки находится в прямой зависимости от уклона русла - отношения разности высоты участка к его длине. У равнинных рек скорость течения редко превышает 1 м/с, а у горных рек — обычно более 5 м/с. Важнейшей характеристикой рек является их питание — снеговое, дождевое, ледниковое и подземное. Большинство рек имеет смешанное питание. Дождевое питание характерно для рек экваториальных, тропических и муссонных областей. Водами тающего снега питаются реки умеренного климата с холодными, снежными зимами. Ледниковое питание получают реки, начинающиеся в высоких, покрытых ледниками горах. Подземные воды питают многие реки, благодаря чему они не пересыхают летом и не иссякают подо льдом. От питания в значительной мере зависит режим рек - изменение расхода воды по сезонам года, колебание ее уровня и изменение температуры. Самая многоводная в мире река — Амазонка (220 000 м3/с в год). В нашей стране самая многоводная река - Енисей (19 800 м3/с в год).
Озера — водоемы замедленного водообмена. Они занимают около 1,8% поверхности суши. Самое большое из них - Каспийское море, самое глубокое — Байкал. Озера могут быть сточными (из них вытекают реки) и бессточными (лишенными стока); последние часто бывают солеными. В озерах с очень высокой минерализацией соли могут выпадать в осадок (самосадочные озера Эльтон и Баскунчак). В распространении озер по земной поверхности наблюдается зональность. Особенно много озер в тундре и лесной зоне. В зонах с недостаточным увлажнением возникают в основном временные водоемы.
Болота - избыточно увлажненные участки суши с влаголюбивой растительностью и слоем торфа не менее 0,3 м (с меньшим слоем - заболоченные земли). Болота образуются вследствие зарастания озер или заболачивания суши и подразделяются на низинные, питающиеся в основном грунтовыми водами и имеющие вогнутую или плоскую поверхность, переходные и верховые, основное питание которых - атмосферные осадки, поверхность их выпуклая. Общая площадь, занимаемая болотами, составляет около 2% площади суши.
Ледники - движущиеся массы льда, возникшие на суше в результате накопления и постепенного преобразования твердых атмосферных осадков. Они образуются там, где в течение года твердых осадков выпадает больше, чем успевает растаять и испариться. Граница, выше которой возможно накопление снега, называется снеговой линией. В полярных областях она расположена низко (в Антарктиде - на уровне моря), на экваторе - на высоте около 5 км, а в тропических широтах - выше 6 км. Оледенение бывает двух типов: покровное (Антарктида, Гренландия) и горное (Аляска, Гималаи, Гиндукуш, Памир, Тянь-Шань). Ледник имеет области питания (где происходит накопление льда) и стока (где его масса уменьшается за счет таяния, испарения, механического откалывания). Накопившись, лед начинает двигаться под действием силы тяжести. Ледник может наступать и отступать. Сейчас ледники занимают около 11 % всей площади суши, в эпоху максимального оледенения они покрывали около 30% ее площади. В ледниках сосредоточено почти 70% запасов пресной воды на Земле.
Воздушная оболочка Земли
Атмосфера — это воздушная оболочка Земли, которая состоит из смеси газов (воздуха), водяного пара и примесей (аэрозолей). Воздух у земной поверхности содержит (по объему) более 78% азота N2, около 21% кислорода 02 и менее 1% остальных газов, в том числе 0,93% аргона Ar и 0,03% диоксида углерода CÜ2 [11, 19, 32]. Состав его почти везде одинаков и благодаря перемешиванию сохраняется до высоты 90-100 км, а выше преобладают более легкие газы. Вследствие фотохимических реакций на высоте 20-30 км образуется слой повышенного содержания озона О3-озоновый экран, который задерживает губительную для живых организмов ультрафиолетовую радиацию. Количество водяного пара с удалением от поверхности быстро падает. На высоте 2 км его в 2 раза меньше, чем у поверхности, а выше 70-80 км он практически отсутствует. В атмосфере присутствуют твердые и жидкие примеси (пыль, сажа, пепел, кристаллики льда и морской соли, капельки воды, микроорганизмы, пыльца растений и пр.).
В соответствии с изменением температуры с высотой выделяют: тропосферу (до 15-17 км в тропиках и до 8-9 км над полюсами), стратосферу (до 50-55 км), мезосферу (до 80—82 км) итермосферу, постепенно переходящую в межпланетное пространство. В тропосфере и мезосфере температура с высотой понижается, а в стратосфере и термосфере, наоборот, повышается (рис. 8.3). По степени ионизации в атмосфере выделяют нейтросферу (до высоты 80-100 км) и сильно ионизированный слой -ионосферу (выше 80-100 км).
Тропосфера содержит 4/5 всей массы атмосферного воздуха. Здесь образуются облака и выпадают осадки. Атмосфера получает наибольшее количество теплоты от отраженной земной поверхностью солнечной радиации. Поэтому в тропосфере температура воздуха с высотой обычно понижается. Но если земная поверхность отдает воздуху больше теплоты, чем за то же время получает, она охлаждается, от нее охлаждается и воздух над ней, и в этом случае температура воздуха с высотой повышается. Это можно наблюдать летом в ночное время, зимой - над снежной поверхностью.
Средняя температура воздуха в нижнем двухметровом слое для всей Земли составляет +14 °С. Температура воздуха изменяется в течение суток и в течение года. В суточном ее ходе наблюдаются один максимум (после полудня) и один минимум (после восхода Солнца). От экватора к полюсам суточные амплитуды колебания температуры убывают; над сушей они всегда больше, чем над океаном. Амплитуды годовых колебаний температуры воздуха возрастают с увеличением широты; на экваторе они меньше суточных (1—2 °С над океаном и до 5 °С над сушей), в умеренных широтах от 10—15 °С над океаном до 60 °С и более над сушей; в полярных широтах годовые колебания температуры достигают 30-40 °С.
На Земле выделяют тепловые пояса, границы которых зависят от высоты Солнца, продолжительности дня, характера земной поверхности, переноса теплоты воздушными и океаническими течениями. Границы жаркого пояса экваториальных широт, где средняя годовая температура не опускается ниже +20 °С, совпадают с границами распространения пальм на суше и кораллов в океане. К жаркому поясу с севера и юга примыкают умеренные пояса, где средняя температура самых теплых месяцев - июля в Северном полушарии и января в Южном - составляет +10 °С. Это граница распространения лесов. В двух холодных поясах средняя температура самого теплого месяца колеблется между +10 °С и О °С. Это граница распространения тундры. За ней располагаются лежащие у полюсов пояса мороза, где средняя температура самого теплого месяца ниже 0 °С.
Давление атмосферы на подстилающую поверхность составляет в среднем 1,033 кг на 1 см2 (больше 10 т на 1 м2). Давление измеряется в миллиметрах ртутного столба, миллибарах и гектопаскалях (0,75 мм рт. ст. = 1 мб = 1 гПа). Максимальное атмосферное давление 816 мм рт. ст. зарегистрировано зимой в Туруханске, а минимальное - 641 мм рт. ст. — в урагане «Нэнси» над Тихим океаном. С высотой давление понижается: на высоте 5 км оно в 2 раза ниже нормального, на высоте 20 км - в 18 раз. Изменение давления объясняется перемещением воздуха вследствие его нагревания и охлаждения. Нагреваясь от поверхности, воздух расширяется и устремляется вверх. Достигнув высоты, на которой его плотность оказывается больше плотности окружающего воздуха, он растекается в стороны. Поэтому давление на теплую поверхность понижается, а на соседние участки - увеличивается.
В экваториальных широтах давление всегда пониженное, так как нагревающийся от поверхности воздух поднимается и уходит в сторону тропических широт, создавая там область повышенного давления. Над холодной поверхностью в Арктике и Антарктиде давление повышенное. Его создает воздух, приходящий из умеренных широт на место уплотнившегося холодного воздуха. Отток воздуха в полярные широты - причина понижения давления в умеренных широтах. В результате формируются пояса пониженного (экваториальный и умеренные) и повышенного (тропические и полярные) давления.
Воздух перемещается в горизонтальном направлении (ветер). Средняя многолетняя скорость ветра у земной поверхности 4— 9 м/с. Максимальная наблюдается у побережья Антарктиды -22 м/с с порывами до 100 м/с. С высотой скорость ветра возрастает, достигая сотен метров в секунду. Направление ветра определяется той стороной горизонта, с которой он дует, и зависит от распределения давления и отклоняющего действия вращения Земли. Воздух стремится перемещаться от большего давления к меньшему по кратчайшему пути, отклоняясь влево в Южном полушарии и вправо - в Северном (рис. 8.4). Схема поясов господствующих ветров осложняется влиянием материков и океанов, формированием сезонных минимумов и максимумов давления над сушей. На границе материков и океанов ветры зимой дуют с материка на океан, летом - с океана на материк (муссонные ветры). В зависимости от характера рельефа, растительности, водоемов возникают местные ветры (бризы, фен, бора и т.д.).
В тропосфере постоянно образуются вихри из-за различного атмосферного давления и отклоняющего действия вращения Земли. В замкнутой области пониженного давления воздух устремляется к центру, отклоняясь вправо в Северном полушарии и влево - в Южном. В центре он поднимается и растекается в стороны, тоже отклоняясь. Образуется восходящий вихрь - циклон, а у поверхности формируется область пониженного давления с циклической системой ветров (от периферии к центру). В замкнутой области повышенного давления формируется нисходящий вихрь - антициклон, а у поверхности - область повышенного давления с антициклической системой ветров (от центра к периферии). Циклоны и антициклоны особенно часто возникают в умеренных широтах. Диаметр их достигает 3—4 тыс. км при высоте до 18-20 км. Циклоны, возникающие в тропических широтах (тайфуны, ураганы), отличаются большей скоростью ветра. Разрушительной силой обладают сравнительно небольшие вихри (смерчи и торнадо).
Вода в атмосфере содержится в виде пара, капелек и кристалликов. Процентное отношение количества водяного пара, содержащегося в воздухе, к тому количеству, которое может содержаться при данной температуре, именуется относительной влажностью. Чем выше температура воздуха, тем больше водяного пара он может содержать. Водяной пар поступает в атмосферу в результате испарения с поверхности. При понижении температуры в атмосфере может начаться конденсация, которая проявляется в виде росы, инея, тумана, облаков. Различают облака перистые (облака верхнего яруса — выше 6000 м; они полупрозрачные, ледяные; осадки из них не выпадают); слоистые (среднего яруса - от 2000 до 6000 м и нижнего - менее 2000 м), которые в основном и дают осадки, обычно длительные, обложные; кучевые (могут образовываться в нижнем ярусе и достигать очень большой высоты; с ними связаны ливни, град, грозы). Наибольшая облачность наблюдается в областях пониженного давления; наименьшая - в областях повышенного давления. Над океаном она больше, чем над сушей, так как здесь в воздухе больше влаги. Абсолютный максимум облачности - над Северной Атлантикой, абсолютный минимум - над Антарктидой и тропическими пустынями. Облака задерживают солнечную радиацию, идущую к земной поверхности, отражают и рассеивают ее, а также задерживают тепловое излучение земной поверхности.
Выпадающие осадки могут быть жидкими (дождь) и твердыми (снег, крупа, град). Осадки измеряются слоем воды (в миллиметрах), который образуется, если выпавшая вода не стекает и не испаряется. В среднем за год на Землю выпадает 1130 мм осадков, из них почти половина - в экваториальных широтах. В направлении от экваториальных широт к тропическим количество осадков убывает. В умеренных широтах их количество снова увеличивается, в полярных - убывает. Над океаном осадков выпадает больше, чем над сушей, над холодными течениями осадков меньше, чем над теплыми. На характер распределения осадков на суше влияют удаленность от океана и рельеф земной поверхности. Больше всего осадков на наветренных склонах гор, с высотой их количество убывает, причем выше снеговой линии твердые осадки не успевают таять и накапливаются в виде снежников и ледников. Благодаря малой теплопроводности снег предохраняет почву от промерзания, растения — от гибели; в нем накапливаются запасы воды, расходуемые летом. Талые воды пополняют запасы грунтовых вод, озер и рек. Абсолютный максимум осадков зарегистрирован в Черапунджи (Индия) - 26 461 мм/год, абсолютный минимум - в пустынях Атакама и Ливийская, где осадки выпадают не каждый год. Но только по количеству выпадающих осадков нельзя судить об обеспеченности территории влагой - увлажнении. Необходимо учитывать возможное испарение (испаряемость), которое зависит от количества солнечной радиации: чем радиации больше, тем больше может испариться влаги. По степени увлажнения выделяются влажные (гумидные) и сухие (аридные) области.
Атмосфера Земли представляет собой взаимосвязанную систему движущихся объемов воздуха. Большие объемы воздуха в тропосфере, обладающие примерно одинаковыми свойствами, называются воздушной массой. Для нее характерно общее направление перемещения. Свои свойства (температуру, влажность, запыленность) воздушная масса приобретает, соприкасаясь с подстилающей поверхностью, над которой задерживается. Выделяются главные (зональные) типы воздушных масс, формирующиеся в широтных поясах с разным атмосферным давлением: экваториальная - теплая и влажная; две тропические - теплые и над материками сухие; две воздушные массы умеренных широт - менее теплые и более влажные, чем тропические, но более теплые и влажные, чем арктическая и антарктическая; арктическая и антарктическая - холодные и сухие. Кроме поясов постоянного пребывания воздушных масс возникают пояса, в которых зимой господствует одна воздушная масса, летом - другая. Например, умеренный воздух формируется из тропического и арктического (антарктического).
Все воздушные массы связаны между собой общей циркуляцией в тропосфере. Внутри главных (зональных) типов воздушных масс существуют континентальный (материковый) и океанический (морской) подтипы. Главными факторами циркуляции выступают лучистая энергия Солнца, вращение Земли вокруг оси и характер земной поверхности.
Для анализа процессов и явлений разного пространственно-временного масштаба, происходящих в атмосфере, существенны такие понятия, как погода и климат. Погода — состояние атмосферы в данной местности в данный момент или за какой-то промежуток времени (сутки, неделю, месяц). Погода характеризуется элементами (температура воздуха, влажность, давление) и явлениями (ветер, облака, атмосферные осадки). Иногда явления погоды носят необычайный или катастрофический характер: ураганы, грозы, ливни, засухи. Главные причины изменения погоды - изменение количества солнечного тепла, перемещение воздушных масс, атмосферных фронтов, циклонов и антициклонов.
Климат — это многолетний режим погоды, характерный для какой-либо местности. Он проявляется в закономерной смене всех наблюдаемых в этой местности погод. Как и погода, климат зависит от количества солнечной радиации, от перемещения воздушных масс, атмосферных фронтов, циклонов и антициклонов и от свойств подстилающей поверхности. Основные показатели климата: температура воздуха (средняя годовая, января и июля), преобладающее направление ветров, годовое количество и режим осадков.
В соответствии с тепловыми поясами и поясами господства зональных типов воздушных масс выделяют климатические пояса. Основных климатических поясов семь: экваториальный, два тропических, два умеренных, два полярных (арктический и антарктический). Между основными расположены переходные климатические пояса: два субэкваториальных, два субтропических и два субполярных. Они различаются сменой воздушных масс: зимой господствует воздушная масса основного пояса, соседнего со стороны полюса, летом — соседнего со стороны экватора. Выделяют материковые и морские климаты: они различаются годовыми амплитудами колебания температуры и количеством осадков. На границе материков и океанов, там, где ветры по сезонам изменяют направление почти на противоположное (зимой - с суши, летом - с океана), господствует муссонный климат, характеризуемый теплым, дождливым летом и холодной, сухой зимой (на востоке Евразии, на границе с Тихим океаном). На материках на климат влияет рельеф. В горах чем выше, тем холоднее, даже на экваторе вершины гор покрыты снегом. В поднимающемся по склонам воздухе количество осадков сначала увеличивается, а затем начинает убывать, т.е. для гор характерна высотная поясность климата. Однако на любой высоте климат зависит от широты местности, поскольку продолжительность дня (солнечная радиация) остается такой же, как в климатическом поясе у подножия.
Климат изменяется с течением времени [2, 17, 29, 32], и на то существует много причин. Так, изменение угла наклона земной оси к орбите вызывает изменение положения границ тепловых, а значит, и климатических поясов. Изменение площадей, расположения материков и океанов влечет за собой значительные изменения климатов на всей Земле. На климат влияют сильные извержения вулканов, выбрасывающие в атмосферу огромное количество газов, пыли, пепла и водяного пара. В последние десятилетия растет антропогенное воздействие на климат, связанное с деятельностью людей: увеличение содержания СО2, запыленность, выбросы теплоты и т.д. влияют на состояние атмосферы; сведение лесов, создание водохранилищ, орошение и осушение территорий, сокращение площадей, покрытых льдом, как на суше, так и в океане, изменяя земную поверхность, также вызывают изменения климата.
§ 8.4. Геодинамические процессы
Эндогенные (внутренние) процессы
Облик нашей планеты не является чем-то застывшим, раз и навсегда сформировавшимся. Благодаря разнообразным геодинамическим процессам происходит постоянное видоизменение земной коры и ее поверхности, создаются условия для возникновения новых горных пород и разрушения уже существующих. Эти процессы делят на две большие группы — эндогенные (внутренние) и экзогенные (внешние). Геодинамические процессы тесно связаны в пространстве и во времени, а само их взаимодействие имеет сложный и во многом противоречивый характер.
Рассмотрим основные геодинамические процессы и некоторые результаты их взаимодействия. Эндогенными называют процессы, вызванные преимущественно внутренними силами Земли и происходящие в ее недрах. Они обусловлены энергией, выделяемой при развитии вещества Земли, действием силы тяжести и сил, возникающих при вращении Земли, а проявляются в виде тектонических движений (медленные поднятия и опускания земной коры, складчатости, образование крупных элементов рельефа, землетрясения), процессов магматизма (выплавления, перемещения и застывания магмы), метаморфизма горных пород и формирования месторождений полезных ископаемых [1, 10, 12, 22, 35].
Тектонические движения приводят к деформациям (нарушениям) верхних частей земной коры. Выделяют разрывные нарушения, сопровождаемые перемещением разорванных частей геологических тел друг относительно друга, и складчатые нарушения, когда происходит изменение залегания слоев без изменения сплошности горных пород, т.е. возникают изгибы пластов - складки; процесс их образования называют складкообразованием или складчатостью.
Тектонические движения можно разделить на горизонтальные и вертикальные. Горизонтальные движения играют значительную роль в формировании литосферы и рельефа земной поверхности и находятся в фокусе внимания тектоники литосферных плит, которая в настоящее время стала, пожалуй, наиболее универсальной концепцией, объясняющей многие явления на Земле.
В основе этой концепции лежат следующие положения [1, 28-30, 35]. Верхняя часть Земли разделяется на две оболочки - жесткую и хрупкую литосферу и более пластичную и подвижную астеносферу. Литосфера подразделяется на некоторое количество плит (рис. 8.5). Основанием для их разграничения служит размещение очагов землетрясений, так как сейсмическая энергия в основном выделяется на границах между плитами. В большинстве случаев, хотя и не всегда, эти границы четко выражены.
Наблюдают три рода взаимных перемещений плит: О дивергентные границы, вдоль которых происходит раздвижение плит (спрединг);
◊ конвергентные границы, вдоль которых происходит сближение плит, обычно выражающееся в пододвигании одной плиты под другую. При этом возможны: субдукция, когда океанская плита пододвигается под континентальную (образуется аккреционная призма, наращивающая континентальную, окраинную или островную дугу); обдукция, когда океанская плита (кора, литосфера) надвигается на континентальную; коллизия, когда сталкиваются две континентальные плиты (обычно с поддвигом одной под другую), которая порождает сложную коровую структуру и горообразование;
◊ трансформные границы, вдоль которых происходит горизонтальное скольжение одной плиты относительно другой по плоскости вертикального трансформного разлома.
В природе преобладают границы первых двух типов. Причем дивергентные границы приурочены к осевым зонам срединно-океанических хребтов и межконтинентальным рифтам (крупным линейным тектоническим структурам земной коры, образовавшимся главным образом при горизонтальном растяжении коры), а конвергентные - к осевым зонам глубоководных желобов, сопряженных с островными дугами. На дивергентных границах происходит непрерывное рождение новой океанической коры, которая перемещается астеносферным течением в сторону зон субдукции, где она поглощается на глубине. Считается, что объем поглощаемой в зонах субдукции океанической коры равен объему коры, образующейся в зонах спрединга. Благодаря этому радиус и объем Земли остаются более или менее постоянными.
Основной причиной горизонтального движения плит считается конвекция в мантии, вызываемая ее разогревом. При этом срединно-океанические хребты с их рифтами располагаются над восходящими ветвями течений, а глубоководные желоба - над нисходящими. Новообразованная океаническая литосфера движется к желобам, постепенно охлаждаясь, уплотняясь и увеличивая свою мощность за счет астеносферы. Результатом этого являются нисходящие вертикальные движения. В конечном счете океанская литосфера становится тяжелее подстилающей астеносферы и погружается в нее вдоль океанских склонов глубоководных желобов.
Вертикальные движения имеют еще более разнообразные причины. Поднятия могут быть обусловлены подъемом более легких выплавок из астеносферы (который одновременно служит причиной расходящихся горизонтальных движений), а также разогревом литосферы над этими восходящими горячими мантийными струями. Опускания в океанах связаны с охлаждением литосферы по мере ее удаления от осей спрединга и максимальны в зонах глубоководных желобов. В зонах, выходящих на поверхность вдоль осей желобов, опускание вновь сменяется поднятием вследствие скучивания, нагромождения осадков и накопления продуктов вулканической деятельности. Процессы регионального метаморфизма и гранитообразования ведут здесь к увеличению мощности легкой континентальной коры, а это в свою очередь приводит к ее всплыванию. С данным процессом связано образование первичных горных сооружений. Вторичные горные сооружения формируются под влиянием столкновения континентальных плит, в результате чего увеличивается тепловой поток, что способствует подъему астеносферы и росту поднятий. Считается, что опускание территории может быть связано с формированием ледникового щита (Антарктида, Гренландия) и подъемом областей, освободившихся от ледникового покрова благодаря снятию нагрузки (Балтийский и Канадский щиты).
Землетрясениями называют подземные толчки и колебания земной поверхности, возникающие в результате внезапных смещений и разрывов в земной коре или верхней части мантии и передающиеся на большие расстояния в виде упругих колебаний. Наблюдения за землетрясениями ведутся с древнейших времен. Детальные описания землетрясений, наблюдавшихся с середины I тысячелетия до н.э., даны японцами. Систематические инструментальные наблюдения начаты во второй половине XIX в. (Б.Б. Голицын, Э. Вихерт, Б. Гутенберг, А. Мохоровичич, Ф. Омори и др.).
Сильные землетрясения носят катастрофический характер, уступая по числу жертв только тайфунам и значительно (в десятки раз) опережая извержения вулканов. Количество слабых землетрясений гораздо больше, чем сильных. Так, на сотни тысяч землетрясений, ежегодно наблюдаемых на Земле, приходятся единицы катастрофических.
Территориальное распределение землетрясений неравномерно и определяется перемещением и взаимодействием литосферных плит. Известны два главных сейсмических пояса: Тихоокеанский, охватывающий кольцом берега Тихого океана, и Средиземноморский, простирающийся через юг Евразии от Пиренейского полуострова на западе до Малайского архипелага на востоке. В пределах океанов значительной сейсмической активностью отличаются срединно-океанические хребты. Очаги землетрясений располагаются на глубинах до 700 км, но 3/4 сейсмической энергии выделяется в очагах, находящихся на глубине не более 70 км. Размер очага катастрофических землетрясений может достигать сотен и тысяч километров.
Область наибольших разрушений располагается вокруг эпицентра — проекции на земную поверхность места начала перемещения масс — гипоцентра.
Интенсивность проявления землетрясений на поверхности измеряется в баллах и зависит от глубины очага и магнитуды землетрясения, служащей мерой его энергии. Известное максимальное значение магнитуды близко к 9. С увеличением магнитуды на единицу энергия возрастает в 100 раз, например при толчке с магнитудой 6 высвобождается в 100 раз больше энергии, чем при магнитуде 5. Шкала магнитуд именуется шкалой Рихтера. Наряду с ней используют ряд сейсмических шкал, которые можно свести к трем основным группам.
В России применяется наиболее широко используемая в мире 12-балльная шкала MSK-64 (Медведева-Шпонхойера-Карника), восходящая к шкале Меркали-Канкани (1902), в странах Латинской Америки принята 10-балльная шкала Росси-Фореля (1883), в Японии - 7-балльная шкала. Оценка интенсивности, в основу которой положены бытовые последствия землетрясения, в шкале MSK-64 зафиксирована следующим образом:
- балл - не ощущается никем, регистрируется только сейсмическими приборами;
- балла — иногда ощущается людьми, находящимися в спокойном состоянии;
- балла - ощущается немногими, более заметно в помещениях на верхних этажах;
- балла - ощущается многими (особенно в помещениях), в ночное время некоторые просыпаются. Возможны звон посуды, дребезжание стекол, хлопанье дверей;
- баллов - ощущается почти всеми, многие ночью просыпаются. Качаются висячие предметы, появляются трещины в оконных стеклах и штукатурке;
- баллов - ощущается всеми, осыпается штукатурка, легкие разрушения зданий;
7 баллов - появляются трещины в штукатурке и откалываются отдельные ее куски, тонкие трещины в стенах. Ощущаются толчки в автомобилях;
8 баллов - большие трещины в стенах, падение труб, памятников. Трещины на крутых склонах и в сыром грунте;
9 баллов - обрушение стен, перекрытий кровли в некоторых зданиях, разрывы подземных трубопроводов;
- баллов - обвалы многих зданий, искривление железнодорожных рельсов. Оползни, обвалы, трещины (до 1 м) в грунте;
- баллов - многочисленные широкие трещины в земле, обвалы в горах, обрушение мостов, только немногие каменные здания сохраняют устойчивость;
- баллов - значительные изменения рельефа, отклонение течения рек, предметы подбрасываются в воздух, тотальное разрушение сооружений.
Сильные землетрясения ощущаются на расстоянии тысячи километров и более. Так, в Москве время от времени наблюдаются толчки интенсивностью до 3 баллов как «эхо» катастрофических карпатских землетрясений в горах Вранча в Румынии; эти же землетрясения в близкой к Румынии Молдавии ощущаются как 7-8-балльные. Продолжительность землетрясений различна. Например, землетрясение на острове Лисса в Средиземном море длилось три года (1870-1873), общее количество толчков составило 86 тыс.
Всякое землетрясение с магнитудой свыше 7 может стать крупной катастрофой. Однако оно может остаться и незамеченным, если произойдет в пустынном районе. Например, в результате Гоби-Алтайского землетрясения 1957 г. с магнитудой 8,5 и интенсивностью 11-12 баллов возникли два озера, мгновенно образовался огромный надвиг в виде каменной волны высотой до 10 м, максимальное смещение по сбросу достигло 300 м и т.п.; территория размером с Данию или Голландию была полностью разрушена. Если бы это землетрясение произошло в густонаселенном районе, число жертв могло измеряться миллионами.
Если землетрясения происходят в море, то они могут вызвать разрушительные волны - цунами, наиболее часто опустошающие побережья Тихого океана, как это произошло в 1933 г. в Японии и в 1952 г. на Камчатке. Общее число жертв землетрясений на планете за последние 500 лет составило около 5 млн человек, почти половина из них приходится на Китай. Большие потери при землетрясениях обычно связаны с высокой плотностью населения, примитивными методами строительства, особенно характерными для бедных регионов.
В конце XX в. деятельность человека, принявшая планетарные масштабы, стала причиной искусственно вызываемой сейсмичности, возникающей, например, при ядерных взрывах (испытания на полигоне Невада (США) инициировали тысячи сейсмических толчков), при строительстве водохранилищ, заполнение которых иногда провоцирует сильные землетрясения. Так случилось в Индии, когда сооружение водохранилища Койна вызвало 8-балльное землетрясение, при котором погибло 177 человек.
Магматизм - процесс выплавления магмы, ее дальнейшего развития, перемещения, взаимодействия с твердыми горными породами и застывания. Магма - это расплавленная масса, образующаяся в глубинных зонах Земли. При внедрении магмы в земную кору или при ее излиянии на поверхность Земли формируются магматические горные породы. Магма периодически образует отдельные очаги в разных по составу и глубинности оболочках Земли.
Магматизм - проявление глубинной активности Земли, тесно связан с ее развитием, тепловой историей и тектонической эволюцией. По глубине проявления магматизм разделяют на абиссальный (глубинный), гипабиссальный (проявившийся на небольшой глубине) и поверхностный (вулканизм). В результате магматизма формируются: интрузивные тела и горные породы - в процессе внедрения в толщу земной коры расплавленной магмы и эффузивные - в процессе излияния жидкой лавы из глубин Земли на поверхность с образованием лавовых покровов и потоков.
Вулканизм — совокупность явлений, обусловленных, проникновением магмы из глубин Земли на ее поверхность. Вулканизм приводит к появлению на поверхности Земли огромного количества вулканического материала (вулканическое стекло, пепел, газы и т.д.), а также к формированию такого грандиозного образования, как вулкан, который возникает над каналами и трещинами в земной коре. Именно по этим каналам и трещинам на земную поверхность извергаются лава, пепел, горячие газы, пары воды и обломки горных пород.
По степени активности различают действующие, уснувшие и потухшие вулканы, а по форме - центральные, извергающиеся из центрального выводного отверстия, и трещинные, вулканические аппараты которых имеют вид зияющих трещин или ряда небольших конусов. Основными частями вулканического аппарата являются магматический очаг (в земной коре или верхней мантии); жерло - выводной канал, по которому магма поднимается к поверхности; конус - возвышенность на поверхности Земли из продуктов выброса вулкана; кратер - углубление на поверхности конуса вулкана. Современные вулканы расположены вдоль крупных разломов и тектонически подвижных областей (главным образом на островах и берегах Тихого и Атлантического океанов). Среди активных действующих вулканов назовем Ключевскую сопку и Авачинскую сопку (Камчатка, Россия), Везувий (Италия), Исалько (Сальвадор), Мауна-Лоа (Гавайские о-ва).
Экзогенные (внешние) процессы
Экзогенными называют процессы, которые происходят на поверхности Земли или на небольшой глубине в земной коре и обусловлены энергией солнечного излучения, гравитационной силой и жизнедеятельностью организмов. Сущность экзогенных процессов сводится к следующему [8, 13, 26, 33]:
◊ выветривание - механическое разрушение горных пород и химическое преобразование слагающих их минералов;
◊ денудация- удаление и перенос разрыхленных и растворенных продуктов разрушения горных пород водой, ветром и льдом. Большое влияние на ее темпы и характер оказывают размах и скорость тектонических движений, а также климатические условия территории. Преобладание денудации над тектоническим поднятием со временем приводит к снижению абсолютных и относительных высот региона и общему нивелированию рельефа;
◊ аккумуляция- отложение этих продуктов в виде осадков на суше или на дне водных бассейнов.
Процесс совместного формирования рельефа и рыхлых отложений в свою очередь именуется морфолитогенезом. Так, в результате деятельности реки формируются и ее долина, и отложения (аллювий).
Основу всех экзогенных процессов составляет выветривание — процесс механического разрушения и химического изменения горных пород и минералов в условиях земной поверхности и приповерхностных слоев литосферы, происходящий под влиянием различных атмосферных агентов (атмосферные осадки, ветер, сезонные и суточные колебания температуры воздуха, воздействие на породы атмосферного кислорода и др.), грунтовых и поверхностных вод, жизнедеятельности растительных и животных организмов и продуктов их разложения. Выветривание имеет большое значение для подготовки вещества к его транспортировке; с ним тесно связано почвообразование - зарождение и формирование почвы.
Склоновые процессы — класс экзогенных явлений. Их широкое распространение связано с тем, что большая часть земной поверхности представляет собой склоны - наклонные участки поверхности, формирующиеся в результате эндогенных и экзогенных процессов. Характер склонов определяется составом и строением слагающих пород, абсолютными и относительными высотами местности, интенсивностью склоновых процессов, особенностями климата, растительности и других компонентов природной среды, экспозиции склонов. По преобладанию гравитационных движений того или иного вида и характеру рельефообразующих процессов выделяют склоны обвальные, оползневые и др. Механизмы их достаточно разнообразны. Например, оползни (скользящее смещение масс горных пород вниз по склону под влиянием силы тяжести) могут образовываться вследствие подмыва склона, переувлажнения, сейсмических толчков и др.; солифлюкционные процессы развиваются в результате медленного передвижения почв и рыхлых грунтов под влиянием попеременного протаивания - промерзания и силы тяжести.
Преобразованию земной поверхности в огромной мере способствуют флювиалъные (эрозионно-аккумулятивные) процессы — совокупность процессов, осуществляемых текучими поверхностными водными потоками. Водные потоки разделяют на постоянные (реки) и временные, а временные в свою очередь - на русловые (овраги и балки) и нерусловые (склоновые) [15]. Результатом флювиальных процессов является размыв водными потоками земной поверхности в одних местах и одновременный перенос и отложение продуктов размыва в других, в результате чего в одно и то же время образуются как выработанные (эрозионные), так и аккумулятивные формы рельефа.
Флювиальные процессы развиваются в пределах речных бассейнов, в которые входят речные, овражно-балочные и склоновые системы. Центральным элементом речных бассейнов являются реки - водные потоки, текущие в естественных руслах и питающиеся за счет поверхностного и подземного стока со своих бассейнов. Реки разделяются на две группы: горные реки с быстрым течением, текущие обычно в узких долинах, и равнинные реки, имеющие более медленное течение и широкие террасированные долины. Наиболее крупные реки: в Российской Федерации - Обь, Енисей, Амур, Лена, Волга; в зарубежных странах — Нил, Миссисипи, Амазонка, Янцзы. Реки характеризуются своим режимом - изменением уровней, расходом, скоростью течения, температурой воды и другими явлениями, зависящими главным образом от характера питания рек и климатических условий местности, по которой они протекают. Суммарный годовой сток рек в Мировой океан -42 тыс. км3. Реки - важнейший элемент природной среды: источник питьевой и промышленной воды, естественный водный путь, постоянно возобновляемый источник гидроэнергии, местообитание рыб и других пресноводных организмов, а также водной растительности.
Гляциалъные процессы — процессы, связанные с деятельностью льда, т.е. с современным или прошлым оледенением территории. Такие процессы могут развиваться при условии оледенения некоторой территории — достаточно длительного существования большого количества льда в пределах участка земной поверхности, в первую очередь в виде ледников - движущихся скоплений льда. Эрозионная деятельность ледников (экзарация) сводится к выпахиванию коренного ложа ледника обломками горных пород, вмерзшими в движущийся лед, аккумулятивная деятельность - к формированию специфических отложений в виде скопления несортированных обломков горных пород, переносимых или отложенных ледниками образований, — морены. В геологическом прошлом наиболее крупные колебания климата приводили к чередованию ледниковых эпох (ледниковий) и межледниковий. В наиболее близкое к нам время - в плейстоцене - насчитываются шесть ледниковых периодов и пять межледниковий. В результате таяния ледников образуются мощные водные потоки, которые формируют флювиотяциальные отложения (отложения водно-ледниковых потоков) и рельеф. В районах, характеризующихся отрицательной температурой горных пород и почв, наличием подземных льдов и многолетней мерзлоты, получили распространение специфические, криогенные процессы: пучение и наледеобразование; криогенное выветривание, морозная сортировка, криогенный крип, солифлюкция и др.; морозное растрескивание; термокарст.
Карстовые процессы — процессы растворения, или выщелачивания, и отчасти размыва трещиноватых растворимых горных пород движущимися подземными и поверхностными водами и связанное с этим образование специфических карстовых западинных форм рельефа на поверхности Земли и различных пустот, каналов и пещер в глубине. Помимо карстовых выделяют процессы псевдокарста (ложного карста), когда происходит образование форм, внешне напоминающих карст, но обусловленных иными процессами.
Эоловые процессы - процессы, обусловленные деятельностью ветра: выдувание или развевание рыхлого материала (дефляция), обтачивание и разрушение твердых пород обломочным материалом, влекомым ветром (корразионные ниши и эоловые «каменные грибы», «каменные столбы» и т.д.), перенос эолового материала и его аккумуляция (грядовые пески, барханы, барханные цепи и параболические дюны и пр.). Эти процессы распространены в местах разряженного растительного покрова и сильных ветров.
Береговые морские процессы происходят в пределах береговой зоны, на границе суши и океана. В результате трансформации и рассеивания энергии морских волн при взаимодействии с литосферой формируются абразионные берега - высокие отступающие берега водоемов и аккумулятивные берега - наступающие берега, сложенные наносами, приносимыми волнами и прибоем. В результате действия поперечного перемещения наносов формируется пляж — скопление наносов в зоне прибойного потока. Считается, что с процессом поперечного перемещения наносов связано также образование подводных валов - аккумулятивных форм, сложенных обычно песчаным материалом и тянущихся вдоль берега параллельно друг другу.
В пределах дна Мирового океана распространены гравитационные процессы — процессы, в возникновении и развитии которых основная роль принадлежит силе тяжести. В настоящее время среди гравитационных процессов дна Мирового океана выделяют процесс медленного сползания или оплывания толщ осадков на относительно пологих склонах (крип); подводные оползни; мутьевые потоки - течение водной суспензии твердых частиц; донные и постоянные поверхностные течения, формирующие огромные осадочные хребты; донная аккумуляция, ведущая к изменению рельефа дна за счет погребения коренных неровностей. Большую роль в формировании экзогенных форм рельефа дна Мирового океана играет биогенный фактор - деятельность рифостроителей, накопление рыхлого материала в результате отмирания организмов, разрушение и разрыхление горных пород вследствие деятельности различных камнеточцев, переработка донных грунтов илоедами и т.д.
Усиливающееся воздействие человека на земную поверхность обусловливает необходимость изучения антропогенных рельефа и отложений — совокупности форм земной поверхности и отложений, измененных или созданных деятельностью человека. Различают сознательно созданные формы антропогенных рельефа и отложений, производимые при мелиорации (террасирование и обвалование склонов, постройка оросительных и дренажных сетей), строительстве (насыпи, выемки, каналы, дамбы) и др., и стихийно возникающие в результате неправильного ведения сельского и лесного хозяйства, подземного строительства, прокладки дорог и т.п. (овраги, оседание поверхности над горными выработками, подвижные пески и др.).
Кроме представленных выше следует указать космогенный процесс, связанный с падением метеоритов, которые оставляют следы в виде кратеров. Помимо крупных тел на поверхность Земли попадает космическое вещество в виде пыли и микрометеоритов, количество которого в общем балансе рыхлых отложений, перемещающихся на поверхности рельефа, невелико.
Взаимодействие экзогенных и эндогенных процессов
Для понимания процессов формирования отложений и рельефа поверхности имеют большое значение концепции взаимодействия экзогенных и эндогенных процессов [8, 9, 13, 23, 26]. В науках о Земле обсуждение этого взаимодействия длится довольно давно. В 1763 г. М.В. Ломоносов уже рассматривал такую идею. Во второй половине XVIII в. были разработаны учения о силах, принимающих участие в образовании земной коры и вызывающих изменения ее поверхности, - нептунизм и плутонизм. Так, Г.А. Вернер (нептунист) считал, что Мировому океану принадлежит исключительная роль в образовании горных пород, слагающих земную поверхность, и в выработке рельефа. В свою очередь Дж. Геттон (плутонист) ввел в науку понятие о геологическом цикле, рассматривал изменения рельефа как составную часть геологического развития недр Земли. Концепцию медленного и непрерывного изменения земной поверхности под влиянием процессов, действующих и в настоящее время, выдвинул Ч. Лайель, который полагал, что основные формы рельефа возникают как результат движения земной коры, а затем нивелируются, разрушаются под действием внешних сил.
В 1899 г. В. Дэвис опубликовал учение о географических (геоморфологических) циклах, дав свое видение взаимодействия эндогенных и экзогенных процессов [9]. По признаку ведущего экзогенного процесса Дэвис выделил «нормальный» (водно-эрозионный), ледниковый, морской и аридный (эоловый) циклы развития рельефа. Деятельность каждого из этих ведущих процессов протекает стадийно и дает разные результаты в условиях разной геологической структуры, но в конечном счете ведет к выравниванию рельефа, к образованию почти равнины (пенеплена). Новый цикл развития, по Дэвису, наступает при тектоническом (эндогенном) поднятии пенеплена, а последовательное развитие рельефа от ранней (юной) стадии к стадии дряхлости может нарушаться тектоническими или климатическими изменениями.
Связь денудационных процессов с вертикальными движениями земной коры рассматривал немецкий ученый В. Пенка (1924), разработавший принцип изучения тектонических движений на основе анализа рельефа [23]. Он полагал, что при анализе взаимодействия экзогенных и эндогенных процессов следует учитывать непрерывность и одновременность действия обоих этих процессов. Впоследствии модели взаимодействия экзогенных и эндогенных процессов усложнялись и уточнялись.
§ 8.5. Возникновение и геологическая история Земли
Возникновение Земли и ранние этапы ее становления
Одной из важных задач современного естествознания в области наук о Земле является восстановление истории ее развития [1,4, 6, 12, 18, 20, 28, 30]. По современным космогоническим представлениям, Земля образовалась из рассеянного в протосолнечной системе газопылевого вещества. Один из наиболее вероятных вариантов возникновения Земли выглядит следующим образом. Вначале образовались Солнце и уплощенная вращающаяся околосолнечная туманность из межзвездного газопылевого облака под влиянием, например, взрыва близкой сверхновой звезды. Далее происходила эволюция Солнца и околосолнечной туманности с передачей электромагнитным или турбулентно-конвективным способом момента количества движения от Солнца планетам. В последующем «пыльная плазма» конденсировалась в кольца вокруг Солнца, а материал колец образовал так называемые планетезимали, которые конденсировались до планет. После этого подобный процесс повторился вокруг планет, что привело к образованию спутников. Считается, что этот процесс занял около 100 млн лет.
Предполагается, что далее в результате дифференциации вещества Земли под действием ее гравитационного поля и радиоактивного нагрева возникли и развились различные по химическому составу, агрегатному состоянию и физическим свойствам оболочки - геосферы Земли. Более тяжелый материал сформировал ядро, состоящее, вероятно, из железа с примесью никеля и серы. В мантии остались несколько более легкие элементы. Согласно одной из гипотез, мантия сложена простыми оксидами алюминия, железа, титана кремния и др. О составе земной коры уже говорилось достаточно подробно в § 8.2. Она сложена более легкими силикатами. Еще более легкие газы и влага сформировали первичную атмосферу.
Как уже говорилось, предполагается, что Земля родилась из скопления холодных твердых частиц, выпадавших из газопылевой туманности и слипавшихся под влиянием взаимного притяжения. По мере роста планеты она разогревалась вследствие соударения этих частиц, достигавших нескольких сот километров, подобно современным астероидам, и выделения теплоты не только известными нам теперь в коре естественно -радиоактивными элементами, но и более чем 10 вымершими с тех пор радиоактивными изотопами AI, Be, Cl и др. В результате могло происходить полное (в ядре) или частичное (в мантии) плавление вещества. В начальный период своего существования, примерно до 3,8 млрд лет, Земля и другие планеты земной группы, а также Луна подвергались усиленной бомбардировке мелкими и крупными метеоритами. Следствием этой бомбардировки и более раннего соударения планетезималей могло стать выделение летучих и начало образования вторичной атмосферы, так как первичная, состоявшая из газов, захваченных при образовании Земли, скорее всего быстро рассеялась в космическом пространстве. Несколько позже стала формироваться гидросфера. Сформировавшиеся таким образом атмосфера и гидросфера пополнялись в процессе дегазации мантии при вулканической деятельности.
Падение крупных метеоритов создавало обширные и глубокие кратеры, подобные наблюдаемым в настоящее время на Луне, Марсе, Меркурии, где следы их не стерты последующими изменениями. Кратерообразование могло провоцировать излияния магмы с образованием базальтовых полей, подобных покрывающим лунные «моря». Так, вероятно, образовалась первичная кора Земли, которая, однако, не сохранилась на современной ее поверхности, за исключением относительно небольших фрагментов в «более молодой» коре континентального типа.
Эта кора, содержащая в своем составе уже граниты и гнейсы, правда, с меньшим содержанием кремнезема и калия, чем в «нормальных» гранитах, появилась на рубеже около 3,8 млрд лет и известна нам по обнажениям в пределах кристаллических щитов практически всех континентов. Способ образования древнейшей континентальной коры пока во многом неясен. В составе этой коры, повсеместно метаморфизованной в условиях высоких температур и давлений, находят породы, текстурные особенности которых свидетельствуют о накоплении в водной среде, т.е. в эту отдаленную эпоху уже существовала гидросфера. Возникновение первой коры, подобной современной, требовало поступления из мантии больших количеств кремнезема, алюминия, щелочей, в то время как сейчас мантийный магматизм создает очень ограниченный объем обогащенных этими элементами пород. Считается, что 3,5 млрд лет назад на площади современных континентов была широко распространена серогнейсовая кора, названная так по преобладающему типу слагающих ее пород. В нашей стране она, например, известна на Кольском полуострове и в Сибири, в частности в бассейне р. Алдан.
Принципы периодизации геологической истории Земли
Дальнейшие события в геологическое время часто определяются, согласно относительной геохронологии, категориями «древнее», «моложе». Например, какая-то эра древнее некоторой другой. Отдельные отрезки геологической истории называются (в порядке уменьшения их продолжительности) зонами, эрами, периодами, эпохами, веками. Их выявление основано на том факте, что геологические события запечатлеваются в горных породах, а осадочные и вулканогенные породы располагаются в земной коре слоями. В 1669 г. Н. Стеной установил закон последовательности напластования, согласно которому нижележащие пласты осадочных пород древнее вышележащих, т.е. образовались ранее их. Благодаря этому появилась возможность определения относительной последовательности образования слоев, а значит, связанных с ними геологических событий.
Основным в относительной геохронологии является биостратиграфический, или палеонтологический, метод установления относительного возраста и последовательности залегания пород. Этот метод был предложен У. Смитом в начале XIX в., а затем развит Ж. Кювье и А. Броньяром. Дело в том, что в большинстве осадочных пород можно встретить остатки животных или растительных организмов. Ж.Б. Ламарк и Ч. Дарвин установили, что животные и растительные организмы в течение геологической истории постепенно совершенствовались в борьбе за существование, приспосабливаясь к изменяющимся условиям жизни. Некоторые животные и растительные организмы на определенных стадиях развития Земли вымирали, на смену им приходили другие, более совершенные. Таким образом, по остаткам ранее живших более примитивных предков, найденным в каком-нибудь пласте, можно судить об относительно более древнем возрасте данного пласта.
Еще один метод геохронологического расчленения пород, особенно важный для расчленения магматических образований океанического дна, основан на свойстве магнитной восприимчивости горных пород и минералов, образующихся в магнитном поле Земли. С изменением ориентировки породы относительно магнитного поля или самого поля часть «врожденной» намагниченности сохраняется, а смена полярности запечатлевается в изменении ориентировки остаточной намагниченности пород. В настоящее время установлена шкала смены таких эпох.
Абсолютная геохронология - учение об измерении геологического времени, выраженного в обычных абсолютных астрономических единицах (годах), - определяет время возникновения, завершения и длительность всех геологических событий, в первую очередь время образования или преобразования (метаморфизма) горных пород и минералов, так как по их возрасту определяется возраст геологических событий. Основным методом здесь является анализ соотношения радиоактивных веществ и продуктов их распада в горных породах, образовывавшихся в разные эпохи.
Древнейшие породы в настоящее время установлены в Западной Гренландии (3,8 млрд лет). Самый большой возраст (4,1 - 4,2 млрд лет) получен по цирконам из Западной Австралии, но циркон здесь залегает в переотложенном состоянии в мезозойских песчаниках. С учетом представлений об одновременности образования всех планет Солнечной системы и Луны и возраста самых древних метеоритов (4,5-4,6 млрд лет) и древних лунных пород (4,0—4,5 млрд лет) возраст Земли принимается равным 4,6 млрд лет.
В 1881 г. на II Международном геологическом конгрессе в Болонье (Италия) были утверждены основные подразделения совмещенных стратиграфической (для разделения слоистых осадочных пород) и геохронологической шкал. По этой шкале история Земли делилась на четыре эры в соответствии с этапами развития органического мира: 1) архейская, или археозойская - эра древнейшей жизни; 2) палеозойская - эра древней жизни; 3) мезозойская - эра средней жизни; 4) кайнозойская — эра новой жизни. В 1887 г. из состава архейской эры выделили протерозойскую — эру первичной жизни. Позднее шкала совершенствовалась. Один из вариантов современной геохронологической шкалы представлен в табл. 8.1. Архейская эра разделяется на две части: ранний (древнее 3500 млн лет) и поздний архей; протерозойская - также на две: ранний и поздний протерозой; в последнем выделяют рифейский (название произошло от древнего названия Уральских гор) и вендский периоды. Фанерозойский зон подразделяется на палеозойскую, мезозойскую и кайнозойскую эры и состоит из 12 периодов.
Таблица 8.1. Геохронологическая шкала
Эон |
Эра |
Период |
Возраст (начало),
млн лет |
Фанерозой |
Кайнозойская |
Четвертичный |
1,8 |
Неогеновый |
23±1 |
Палеогеновый |
65±3 |
Мезозойская |
Меловой |
130±5 |
Юрский |
204±5 |
Триасовый |
245±10 |
Палеозойская |
Пермский |
290±10 |
Каменноугольный |
360±10 |
Девонский |
410±10 |
Силурийский |
440±15 |
Ордовикский |
495±20 |
Кембрийский |
570±10 |
Криптозой |
Протерозойская |
Вендский |
650±100 |
Рифейский |
1650±100 |
Карельский |
2600±100 |
Архейская |
|
3500±100 |
Катархейская |
|
4500±100 |
Основные этапы эволюции земной коры
Кратко рассмотрим основные этапы эволюции земной коры как косного субстрата, на котором развилось многообразие окружающей природы [6, 12, 18, 20, 28-30, 35].
В apxeeеще довольно тонкая и пластичная кора под влиянием растяжения испытала многочисленные разрывы сплошности, через которые к поверхности вновь устремилась базальтовая магма, заполнившая прогибы длиной сотни километров и шириной многие десятки километров, известные как зелено-каменные пояса (этим названием они обязаны преобладающему зеленосланцевому низкотемпературному метаморфизму базальтовых пород). Наряду с базальтами среди лав нижней, основной по мощности части разреза этих поясов встречаются высокомагнезиальные лавы, свидетельствующие об очень большой степени частичного плавления мантийного вещества, что говорит о высоком тепловом потоке, намного превышавшем современный. Развитие зеленокаменных поясов заключалось в смене типа вулканизма в направлении увеличения содержания в нем диоксида кремния (SiO2), в деформациях сжатия и метаморфизме осадочно-вулканогенного выполнения и, наконец, в накоплении обломочных осадков, свидетельствующих об образовании гористого рельефа.
После смены нескольких поколений зеленокаменных поясов архейский этап эволюции земной коры завершился 3,0 -2,5 млрд лет назад массовым образованием нормальных гранитов с преобладанием К2О над Na2O. Гранитизация, а также региональный метаморфизм, местами достигший высшей ступени, привели к формированию зрелой континентальной коры на большей части площади современных материков. Однако и эта кора оказалась недостаточно устойчивой: в начале протерозойской эры она испытала дробление. В это время возникла планетарная сеть разломов и трещин, заполнявшихся дайками (пластинообразными геологическими телами). Одна из них - Великая дайка в Зимбабве - имеет длину более 500 км и ширину до 10 км. Кроме того, впервые проявилось рифтообразование, давшее начало зонам прогибания, мощного осадконакопления и вулканизма. Их эволюция привела к созданию в конце раннего протерозоя (2,0-1,7 млрд лет назад) складчатых систем, вновь спаявших обломки архейской континентальной коры, чему способствовала новая эпоха мощного гранитообразования.
В итоге к концу раннего протерозоя (к рубежу 1,7 млрд лет назад) зрелая континентальная кора существовала уже на 60— 80% площади ее современного распространения. Более того, некоторые ученые полагают, что на этом рубеже вся континентальная кора составляла единый массив - суперконтинент Мегагею (большая земля), которому на другой стороне земного шара противостоял океан - предшественник современного Тихого океана - Мегаталасса (большое море). Этот океан был менее глубоким, чем современные океаны, ибо рост объема гидросферы за счет дегазации мантии в процессе вулканической деятельности продолжается всю последующую историю Земли, хотя и более медленно. Не исключено, что прообраз Мегаталассы появился еще раньше, в конце архея.
В катархее и начале архея появились первые следы жизни - бактерии и водоросли, а в позднем архее распространились водорослевые известковые постройки - строматолиты. В позднем архее началось, а в раннем протерозое завершилось коренное изменение состава атмосферы: под влиянием жизнедеятельности растений в ней появился свободный кислород, тогда как катархейская и раннеархейская атмосфера состояла из водяного пара, СО2, СО, СН4, N, NH3 и H2S с примесью НС1, HF и инертных газов.
В позднем протерозое (1,7-0,6 млрд лет назад) Мегагея стала постепенно раскалываться, и этот процесс резко усилился в конце протерозоя. Следами его являются протяженные континентальные рифтовые системы, погребенные в основании осадочного чехла древних платформ. Важнейшим его результатом было образование обширных межконтинентальных подвижных поясов - Северо-Атлантического, Средиземноморского, Урало-Охотского, разделивших континенты Северной Америки, Восточной Европы, Восточной Азии и наиболее крупный обломок Мегагеи - южный суперконтинент Гондвану. Центральные части этих поясов развивались на новообразованной в процессе рифтогенеза океанской коре, т.е. пояса представляли собой океанские бассейны. Их глубина постепенно увеличивалась по мере роста гидросферы. Одновременно подвижные пояса развивались по периферии Тихого океана, глубина которого также возрастала. Климатические условия становились более контрастными, о чем свидетельствует появление, особенно в конце протерозоя, ледниковых отложений (тиллитов, древних морен и водно-ледниковых осадков).
Палеозойский этап эволюции земной коры характеризовался интенсивным развитием подвижных поясов - межконтинентальных и окраинно-континентальных (последние на периферии Тихого океана). Эти пояса расчленялись на окраинные моря и островные дуги, их осадочно-вулканогенные толщи испытывали сложные складчато-надвиговые, а затем сбрососдвиговые деформации, в них внедрялись граниты и на этой основе формировались складчатые горные системы. Этот процесс протекал неравномерно. В нем различают ряд интенсивных тектонических эпох и гранитного магматизма: байкальскую — в самом конце протерозоя, салаирскую (от хребта Са-лаир в Средней Сибири) — в конце кембрия, таковскую (от Таковских гор на востоке США) - в конце ордовика, каледонскую (от древнеримского названия Шотландии) - в конце силура, акадскую (Акадия - старинное название северо-восточных штатов США) — в середине девона, судетскую — в конце раннего карбона, заальскую (от р. Заале в Германии) — в середине ранней перми. Первые три тектонические эпохи палеозоя нередко объединяют в каледонскую эру тектогенеза, последние три - в герцинскую, или варисскую. В каждую из перечисленных тектонических эпох определенные части подвижных поясов превращались в складчатые горные сооружения, а после разрушения (денудации) входили в состав фундамента молодых платформ. Но некоторые из них частично испытывали активизацию в последующие эпохи горообразования.
К концу палеозоя межконтинентальные подвижные пояса полностью замкнулись и заполнились складчатыми системами. В результате отмирания Северо-Атлантического пояса Североамериканский континент сомкнулся с Восточно-Европейским, а последний (после завершения развития Урало-Охотского пояса) — с Сибирским, Сибирский — с Китайско-Корейским. В итоге образовался суперконтинент Лавразия, а отмирание западной части Средиземноморского пояса привело к его объединению с южным суперконтинентом - Гондваной - в одну континентальную глыбу - Пангею. Восточная часть Средиземноморского пояса в конце палеозоя - начале мезозоя превратилась в огромный залив Тихого океана, по периферии которого также поднялись складчатые горные сооружения.
На фоне этих изменений структуры и рельефа Земли продолжалось развитие жизни. Первые животные появились еще в позднем протерозое, а на самой заре фанерозоя существовали почти все типы беспозвоночных, но они еще были лишены раковин или панцирей, которые известны с кембрия. В силуре (или уже в ордовике) начался выход растительности на сушу, а в конце девона существовали леса, получившие наибольшее распространение в каменноугольном периоде. Рыбы появились в силуре, земноводные - в карбоне.
Мезозойская и кайнозойская эры - последний крупный этап развития структуры земной коры, который отмечен становлением современных океанов и обособлением современных континентов. В начале этапа, в триасе, еще существовала Пангея, но уже в раннем юрском периоде она снова раскололась на Лавразию и Гондвану вследствие возникновения широтного океана Тетис, протянувшегося от Центральной Америки до Индокитая и Индонезии, а на западе и на востоке он смыкался с Тихим океаном (рис. 8.6); этот океан включал и Центральную Атлантику. Отсюда в конце юры процесс раздвига континентов распространился к северу, создав в течение мелового периода и раннего палеогена Северную Атлантику, а начиная с палеогена - Евразийский бассейн Северного Ледовитого океана (Амеразийский бассейн возник раньше как часть Тихого океана). В итоге Северная Америка отделилась от Евразии. В поздней юре началось формирование Индийского океана, и с начала мела стала раскрываться с юга Южная Атлантика. Это означало начало распада Гондваны, существовавшей как единое целое в течение всего палеозоя. В конце мела Северная Атлантика соединилась с Южной, отделив Африку от Южной Америки. Тогда же Австралия отделилась от Антарктиды, а в конце палеогена произошло отделение последней от Южной Америки.
Таким образом, к концу палеогена оформились все современные океаны, обособились все современные континенты и облик Земли приобрел вид, в основном близкий к нынешнему. Однако еще не было современных горных систем.
С позднего палеогена (40 млн лет назад) началось интенсивное горообразование, достигшее кульминации в последние 5 млн лет. Этот этап становления молодых складчато-покровных горных сооружений, образования возрожденных сводово-глыбовых гор выделяют как неотектонический. Фактически неотектонический этап является подэтапом мезозойско-кайнозойского этапа развития Земли, так как именно на этом этапе оформились основные черты современного рельефа Земли, начиная с распределения океанов и континентов.
На этом этапе завершилось формирование основных черт современной фауны и флоры. Мезозойская эра была эрой пресмыкающихся, млекопитающие стали преобладать в кайнозое, а в позднем плиоцене появился человек. В конце раннего мела появились покрытосемянные растения и суша приобрела травяной покров. В конце неогена и антропогене высокие широты обоих полушарий были охвачены мощным материковым оледенением, реликтами которого являются ледниковые шапки Антарктиды и Гренландии. Это было третье крупное оледенение в фанерозое: первое имело место в позднем ордовике, второе — в конце карбона - начале перми; оба они были распространены в пределах Гондваны.
ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ
- Что такое сфероид, эллипсоид и геоид? Каковы параметры принятого в нашей стране эллипсоида? Зачем он нужен?
- Каково внутреннее строение Земли? На основании чего делается заключение о ее строении?
- Каковы основные физические параметры Земли и как они изменяются с глубиной?
- Каков химический и минералогический состав Земли? На основании чего делается заключение о химическом составе всей Земли и земной коры?
- Какие основные типы земной коры выделяют в настоящее время?
- Что такое гидросфера? Что такое круговорот воды в природе? Какие основные процессы происходят в гидросфере и ее элементах?
- Что такое атмосфера? Каково ее строение? Какие процессы происходят в ее пределах? Что такое погода и климат?
- Дайте определение эндогенных процессов. Какие эндогенные процессы вы знаете? Кратко их охарактеризуйте.
- В чем заключается сущность тектоники литосферных плит? Каковы ее основные положения?
10. Дайте определение экзогенных процессов. В чем основная сущность этих процессов? Какие эндогенные процессы вы знаете? Кратко их охарактеризуйте.
11. Как взаимодействуют эндогенные и экзогенные процессы? Каковы результаты взаимодействия этих процессов? В чем сущность теорий В. Дэвиса и В. Пенка?
- Каковы современные представления о возникновении Земли? Как происходило ее раннее становление как планеты?
- На основании чего производится периодизация геологической истории Земли?
14. Как развивалась земная кора в геологическом прошлом Земли? Каковы основные этапы развития земной коры?
ЛИТЕРАТУРА
- Аллисон А., Палмер Д. Геология. Наука о вечно меняющейся Земле. М., 1984.
- Будыко М.И. Климат в прошлом и будущем. Л., 1980.
- Вернадский В.И. Научная мысль как планетарное явление. М., 1991.
- Гаврилов В.П. Путешествие в прошлое Земли. М., 1987.
- Геологический словарь. Т. 1, 2. М., 1978.
- Городницкий A.M., Зоненшайн Л.П., Мирлин Е.Г. Реконструкции положения материков в фанерозое. М., 1978.
7. Давыдов Л.К., Дмитриева A.A., Конкина Н.Г. Общая гидрология. Л., 1973.
- Динамическая геоморфология /Под ред. Г.С. Ананьева, Ю.Г. Симонова, А.И. Спиридонова. М., 1992.
- Дэвис В.М. Геоморфологические очерки. М., 1962.
10. Земля. Введение в общую геологию. М., 1974.
11. Климатология / Под ред. O.A. Дроздова, Н.В. Кобышевой. Л., 1989.
- Короновский Н.В., Якушева А.Ф. Основы геологии. М., 1991.
- Леонтьев O.K., Рычагов Г.И. Общая геоморфология. М., 1988.
- Львович М.И. Вода и жизнь. М., 1986.
- Маккавеев Н.И., Чалов P.C. Русловые процессы. М., 1986.
- Михайлов В.Н., Добровольский А.Д. Общая гидрология. М., 1991.
- Монин A.C. Введение в теорию климата. Л., 1982.
- Монин A.C. История Земли. М., 1977.
- Неклюкова Н.П., Душина И.В., Раковская Э.М. и др. География. М., 2001.
- Немков Г.И. и др. Историческая геология. М., 1974.
- Неспокойный ландшафт. М., 1981.
- Общая и полевая геология / Под ред. А.Н. Павлова. Л., 1991.
- Пенк В. Морфологический анализ. М., 1961.
- Перелъман А.И. Геохимия. М., 1989.
- Полтараус Б.В., Кислое A.B. Климатология. М., 1986.
26. Проблемы теоретической геоморфологии /Под ред. Л.Г. Никифорова, Ю.Г. Симонова. М., 1999.
- Сауков A.A. Геохимия. M., 1977.
- Сорохтин О.Г., Ушаков С.А. Глобальная эволюция Земли. М., 1991.
- Ушаков С.А., Ясаманов H.A. Дрейф материков и климат Земли. М., 1984.
- Хаин В.Е., Ломте М.Г. Геотектоника с основами геодинамики. М., 1995.
- Хаин В.Е., Рябухин А.Г. История и методология геологических наук. М., 1997.
- Хромов С.П., Петросянц М.А. Метеорология и климатология. М., 1994.
- Щукин И.С. Общая геоморфология. T.I. M., 1960.
- Экологические функции литосферы / Под ред. В.Т. Трофимова. М., 2000.
- Якушева А.Ф., Хаин В.Е., Славин В.И. Общая геология. М., 1988.
.
Комментарии (2) Обратно в раздел Наука
|
|